• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

從多視角已校正影像改善三維粗略模型 / Refinement of 3D rough models from calibrated multi-view images

吳坤信 Unknown Date (has links)
由多視角已校正相片重建出的三維空間模型精確度不佳,近年來甚多學者專家致力於提升改善建模的精確度。在本論文中,我們提出了新的方法,透過多視角相片結合極線轉換可以改善對應點的準確度,並且有效的排除光源的影響,以提升模型整體的精確度。 我們首先利用多視角已校正影像建立粗略3D模型,並轉出模型初始三維點座標。接著將三維座標點投影回可視相片,並使用色彩分布值和多視角極線轉換去改善可視相片中的對應點。 其次利用多視角幾何創造出更多資訊,來能幫助提升對應點的正確性。接著調整法向量角度,使自動化的貼圖更精確。最後結合貼圖使3D模型更加逼真。   在我們的實驗顯示發現對應點經過改善後較未改善前對應點的正確性高出約10%,3D模型的細節也更符合實際物體的形狀。敷貼上多視角拍攝的相片後3D模型也更加逼真。
2

從多視角影像萃取密集影像對應 / Dense image matching from multi-view images

蔡瑞陽, Tsai, Jui Yang Unknown Date (has links)
在三維模型的建構上,對應點的選取和改善佔有相當重要的地位。對應點的準確性影響整個建模的成效。本論文中我們提出了新的方法,透過極線轉換法(epipolar transfer)在多視角影像中做可見影像過濾和對應點改善。首先,我們以Furukawa所提出的方法,建構三維補綴面並加以做旋轉和位移,或是單純在二維影像移動對應點兩種方式選取初始對應點。然後再以本研究所提出的極線轉換法找到適當位置的對應點。接下來我們將每個三維點的可見影像(visible image)再次透過極線轉換法去檢查可見影像上的對應點位置是否適當,利用門檻值將不合適的對應點過濾掉。進一步針對對應點位置的改善和篩選,期望透過極線幾何法來找到位置最準確的對應點位置。最後比較實驗成果,觀察到以本研究所提出的方法做改善後,對應點準確度提高近百分之十五。 / In the construction of three-dimensional models, the selection and refinement of the correspondences plays a very important rule. The accuracy of the correspondences affects modeling results. In this paper, we proposed a new approach, that is filtering the visible images and improving the corresponding points in multi-view images by epipolar transfer method. First of all, we use Furukawa proposed method to construct three-dimensional patches and making rotation and displacement, or simply move the corresponding points in two-dimensional images are two ways to select the initial corresponding points. And then to use epipolar transfer method in this study to find the appropriate location of the corresponding points. Next we will check the corresponding points on the each 3D point’s visible image again through the polar transformation method , and we use the threshold value to filter out the corresponding points. Further the location of the corresponding points for the improvement and screening, hoped that through the epipolar geometry method to find the most accurate corresponding points’ location. Experimental results are compared to observe the improvements that the method proposed in this study, the corresponding point accuracy by nearly 15 percent.
3

三焦張量在多視角幾何中的計算與應用 / Computation and Applications of Trifocal Tensor in Multiple View Geometry

李紹暐, Li, Shau Wei Unknown Date (has links)
電腦視覺三維建模的精確度,仰賴影像中對應點的準確性。以前的研究大多採取兩張影像,透過極線轉換(epipolar transfer)取得影像間基礎矩陣(fundamental matrix)的關係,然後進行比對或過濾不良的對應點以求取精確的對應點。然極線轉換存在退化的問題,如何避免此退化問題以及降低兩張影像之間轉換錯誤的累積,成為求取精確三維建模中極待解決的課題。 本論文中,我們提出一套機制,透過三焦張量(trifocal tensor)的觀念來過濾影像間不良的對應點,提高整體對應點的準確度,從而能計算較精確的投影矩陣進行三維建模。我們由多視角影像出發,先透過Bundler求取對應點,然後採用三焦張量過濾Bundler產生的對應點,並輔以最小中值平方法(LMedS)提升選點之準確率,再透過權重以及重複過濾等機制來調節並過濾對應點,從而取得精確度較高的對應點組合,最後求取投影矩陣進行電腦視覺中的各項應用。 實作中,我們測詴了三組資料,包含一組以3ds Max自行建置的資料與兩組網路中取得的資料。我們先從三張影像驗證三焦張量的幾何特性與其過濾對應點的可行性,再將此方法延伸至多張影像,同樣也能證實透過三焦張量確實能提升對應點的準確度,甚至可以過濾出輸入資料中較不符合彼此間幾何性的影像。 / The accuracy of 3D model constructions in computer vision depends on the accuracy of the corresponding points extracted from the images. Previous studies in this area mostly use two images and compute the fundamental matrix through the use of the epipolar geometry and then proceed for corresponding point matching and filtering out the outliers in order to get accurate corresponding points. However, the epipoler transform suffers from the degenerate problems and, also, the accumulated conversion errors during the corresponding matches both will degrade the model accuracy. Solving these problems become crucial in reconstructing accurate 3D models from multiple images. In this thesis, we proposed a mechanism to obtain accurate corresponding points for 3D model reconstruction from multiple images. The concept of trifocal tensor is used to remove the outliers in order to improve the overall accuracy of the corresponding points. We first use Bundler to search the corresponding points in the feature points extracted from multiple view images. Then we use trifocal tensor to determine and remove the outliers in the corresponding points generated by Bundler. LMedS is used in these processes to improve the accuracy of the selected points. One can also improve the accuracy of the corresponding points through the use of weighting function as well as repeated filtering mechanism. With these high precision corresponding points, we can compute more accurate fundamental matrix in order to reconstruct the 3D models and other applications in computer vision. We have tested three sets of data, one of that is self-constructed data using the 3ds Max and the other two are downloaded from the internet. We started by demonstrating the geometric properties of trifocal tensor associated with three images and showed that it can be used to filter out the bad corresponding points. Then, we successfully extended this mechanism to more images and successfully improved the accuracy of the corresponding points among these images.

Page generated in 0.0242 seconds