1 |
縮減式模型下房屋抵押貸款之評價 / Mortgage Valuation under Reduced-Form Model江淑玲, Chiang,Shu Ling Unknown Date (has links)
房屋抵押貸款的評價,因為需考慮到貸款人的提前清償及違約風險造成現金流量之不確定性,決定房屋抵押貸款的價格比決定一般違約證券的價格更具困難度。因此,如何合理評估抵押貸款證券的價值實為一值得深入探討之課題,本文即針對此議題進行研究。傳統文獻在進行房屋抵押貸款的評價方法,主要可區分為兩種:結構模型(structural-form approach)及縮減式模型(reduced-form approach)。目前的文獻上,其評價的封閉解只存在於結構式模型,但在此模型下的評價,存在著違約與提前清償條件的設定問題,這將對評價的準確性造成很大的影響,在實務的應用上有一定的限制。再者,結構式模型在處理多變數且變數間具相關性的情況,存在一定的複雜性與困難度,而縮減式模型在此情況的處理上是較容易的。本研究將從縮減式模型的角度,引入 Jarrow (2001)的概念,在包含多重變數並考慮變數間相關係數之縮減模型下,進行房屋抵押貸款封閉解的推導。透過此方法可協助資產管理者從事投資組合配置最適化與避險策略的分析,亦期望能提供實務界一個更具可行性與效率性之房屋抵押貸款評價模型。 / Valuing mortgage-related securities is more complicated than valuing regular defaultable claims due to the borrower’s prepayment behavior as well as the possibility of default. In general, the methods that are applied to investigate mortgage value and termination risk can be divided into two categories: a structural-form approach and a reduced-form approach. Some researchers use a structural-form model to obtain the closed-form formulae for the mortgage value. With this method, however, it is difficult to identify the critical region of early exercise and deal with the situation including multivariable and their correlations correlation among variables. As an alternative, the reduced-form model developed in this study is able to value the mortgage without setting boundary conditions, and can thereby accurately handle the multi-dimensional space of correlated state variables. This study extends Jarrow’s (2001) model to examine mortgage valuations. The purpose of this article is to derive a closed-form solution of the mortgage valuation equation under a general reduced-form model that embeds relevant economic variables. This new approach enables portfolio managers to undertake sophisticated portfolio optimization and hedging analyses, and makes it possible to more accurately and efficiently value the complicated mortgage.
|
2 |
考慮信用及利率風險下之可轉債評價 / Pricing convertible bonds with credit risk and interest rate risk凃宗旻 Unknown Date (has links)
可轉換公司債是給予持有者於債券存續期間內行使轉換為股票之複合式證券,除了債券性質外,內嵌的股票選擇權便屬於美式選擇權。而在本文中,針對內含美式選擇權的公司債評價是使用最小平方蒙地卡羅的數值分析,主要原因在於可轉債本身的條款彈性高,加上可轉債可能涉及之標的資產為兩個以上或狀態變數也可能具有多個維度(dimension)。此外,針對可轉債發行公司本身的信用問題,本文則採用縮減式(reduced-form)模型來處理其違約風險問題。依據A. Takahashi, T. Kobayashi, and N. Nakagawa認為採用結構式(structured-form)的缺點為參數難以校準,並列出下面兩論點認為使用縮減式的優點在於:
1. 違約事件將可能造成股價跳躍(jump)現象。
2. 在Duffie and Singleton方法下,資產隨機過程不必設定jump term,仍可設定為擴散過程(diffusion process)。
至於在利率期間結構方面,雖然Brennan and Schwartz(1980)認為實務上,考量利率的隨機性除了降低評價的效率性之外,與利率設定為常數相比,其差異不大。但針對為何差異不大的原因,本文認為利率對於純粹債券之價值影響為負向關係,而對於股票買權則是正向關係,故使得最後可轉債的影響則不明顯。然而,在目前「可轉債資產交換」等可轉債相關衍生性商品相繼推陳出新之下,使得可轉債的純粹債券與選擇權的個別要素評價也是相當重要。所以本文在利率風險的建構上將使用BGM模型來描述利率的隨機過程。
|
Page generated in 0.0182 seconds