81 |
金融與非金融銀行與證券業效率分析—關聯結構法 / Cost efficiency of financial holding banks—copula method賴韋綸, Lai, Wei-Lun Unknown Date (has links)
綜觀國內外探討金融產業經營效率之相關文獻,多數針對銀行、證券、保險中其一產業進行獨立實證研究,較無法將金融控股之綜效表現加以捕捉並體現在估計效率值中,也因此在本文中,將同時涵蓋銀行業務與證券業務,並以納入金控體制與否加以區分為不同子集合進行探討,透過數理方法聯結金控體制下銀行與證券業務部門兩者間因多角化經營所產生之綜效,以修正傳統方法上表現綜效法上之不足,使估計效率值具有更高的參考依據。
此外,研究產業效率所參考之研究方法,在相關文獻中無參數法乃以資料包絡分析法(Data envelopement analysis, DEA)為多數研究者所採用;參數法則以隨機邊界模型(stochastic frontier approach, SFA)為主要研究方法,進一步在不同群組技術效率之比較中,Battese et al. (2004) 與 O’Donnell et al. (2008)提出為多數研究者所接受之共同邊界模型(Metafrontier),而Huang et al. (2013)所提出之修正模型使共同邊界模型在效率研究上更加完備,本文則希望以此修正模型作為主要研究模型,並同時引用Battese et al. (2004)傳統模型加以比較:(1)考慮綜效前後 (2)傳統模型與修正模型間效率值的差異,期待為後續相關研究者在方法論上提供參考依據。
關鍵字:經營效率、技術效率、共同邊界、計量方法、關聯結構法、金融控股銀行 / This study aims to discuss the evidence suggested that synergy improve the operating performance of Taiwan’s commerical banks and securites firms. Furthermore, efficiency comparisons amongst two basis metafrontier models, Haung et al.(2013) and Battese et al.(2004), and copula-adjusted metafrontier. The empirical results suggest that copula-adjusted metafrontier could significantly improve the efficiency of financial holding companies based on the data of sample period 2001-2012. On the framework of copula-adjusted metafrontier, the evidence also imply that financial holging companysubsidiary technical efficiency is better than non-financial holding company compared to the framework of Haung et al.(2013) and Battese et al.(2004), the conclusion emphasis that synergy is perhaps one crucial key factor influenced the efficiency estimation. Otherwise, this study appears to support the copula-adjusted metafrontier model is also well-adjusted compared to programming techniques because not only it enables the statistical inferences to be drawn, but also provides more efficiency estimations.
|
82 |
Estimation and Evaluation of Municipal Solid Waste Management System by Using Economic-Environmental Models in Taiwan / 台湾における経済環境モデルを用いた都市ごみ管理システムの推計と評価に関する研究 / タイワン ニ オケル ケイザイ カンキョウ モデル オ モチイタ トシ ゴミ カンリ システム ノ スイケイ ト ヒョウカ ニ カンスル ケンキュウWeng, Yu-Chi 23 March 2009 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第14561号 / 工博第3029号 / 新制||工||1451(附属図書館) / 26913 / UT51-2009-D273 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 松岡 譲, 教授 酒井 伸一, 准教授 倉田 学児 / 学位規則第4条第1項該当
|
83 |
複迴歸係數排列檢定方法探討 / Methods for testing significance of partial regression coefficients in regression model闕靖元, Chueh, Ching Yuan Unknown Date (has links)
在傳統的迴歸模型架構下,統計推論的進行需要假設誤差項之間相互獨立,且來自於常態分配。當理論模型假設條件無法達成的時候,排列檢定(permutation tests)這種無母數的統計方法通常會是可行的替代方法。
在以往的文獻中,應用於複迴歸模型(multiple regression)之係數排列檢定方法主要以樞紐統計量(pivotal quantity)作為檢定統計量,進而探討不同排列檢定方式的差異。本文除了採用t統計量這一個樞紐統計量作為檢定統計量的排列檢定方式外,亦納入以非樞紐統計量的迴歸係數估計量b22所建構而成的排列檢定方式,藉由蒙地卡羅模擬方法,比較以此兩類檢定方式之型一誤差(type I error)機率以及檢定力(power),並觀察其可行性以及適用時機。模擬結果顯示,在解釋變數間不相關且誤差分配較不偏斜的情形下,Freedman and Lane (1983)、Levin and Robbins (1983)、Kennedy (1995)之排列方法在樣本數大時適用b2統計量,且其檢定力較使用t2統計量高,但差異程度不大;若解釋變數間呈現高度相關,則不論誤差的偏斜狀態,Freedman and Lane (1983)、Kennedy (1995) 之排列方法於樣本數大時適用b2統計量,其檢定力結果也較使用t2統計量高,而且兩者的差異程度比起解釋變數間不相關時更加明顯。整體而言,使用t2統計量適用的場合較廣;相反的,使用b2的模擬結果則常需視樣本數大小以及解釋變數間相關性而定。 / In traditional linear models, error term are usually assumed to be independently, identically, normally distributed with mean zero and a constant variance. When the assumptions cannot meet, permutation tests can be an alternative method.
Several permutation tests have been proposed to test the significance of a partial regression coefficient in a multiple regression model. t=b⁄(se(b)), an asymptotically pivotal quantity, is usually preferred and suggested as the test statistic. In this study, we take not only t statistics, but also the estimates of the partial regression coefficient as our test statistics. Their performance are compared in terms of the probability of committing a type I error and the power through the use of Monte Carlo simulation method. Situations where estimates of the partial regression coefficients may outperform t statistics are discussed.
|
84 |
變數轉換之離群值偵測 / Detection of Outliers with Data Transformation吳秉勳, David Wu Unknown Date (has links)
在迴歸分析中,當資料中存在很多離群值時,偵測的工作變得非常不容易。 在此狀況下,我們無法使用傳統的殘差分析正確地偵測出其是否存在,此現象稱為遮蔽效應(The Masking Effect)。 而為了避免此效應的發生,我們利用最小中位數穩健迴歸估計值(Least Median Squares Estimator)正確地找出這些群集離群值,此估計值擁有最大即50﹪的容離值 (Breakdown point)。 在這篇論文中,用來求出最小中位數穩健迴歸估計值的演算法稱為步進搜尋演算法 (the Forward Search Algorithm)。 結果顯示,我們可以利用此演算法得到的穩健迴歸估計值,很快並有效率的找出資料中的群集離群值;另外,更進一步的結果顯示,我們只需從資料中隨機選取一百次子集,並進行步進搜尋,即可得到概似的穩健迴歸估計值並正確的找出那些群集離群值。 最後,我們利用鐘乳石圖(Stalactite Plot)列出所有被偵測到的離群值。
在多變量資料中,我們若使用Mahalanobis距離也會遭遇到同樣的屏蔽效應。 而此一問題,隨著另一高度穩健估計值的採用,亦可迎刃而解。 此估計值稱為最小體積橢圓體估計值 (Minimum Volume Ellipsoid),其亦擁有最大即50﹪的容離值。 在此,我們也利用步進搜尋法求出此估計值,並利用鐘乳石圖列出所有被偵測到的離群值。
這篇論文的第二部分則利用變數轉換的技巧將迴歸資料中的殘差項常態化並且加強其等變異的特性以利後續的資料分析。 在步進搜尋進行的過程中,我們觀察分數統計量(Score Statistic)和其他相關診斷統計量的變化。 結果顯示,這些統計量一起提供了有關轉換參數選取豐富的資訊,並且我們亦可從步進搜尋進行的過程中觀察出某些離群值對參數選取的影響。 / Detecting regression outliers is not trivial when there are many of them. The methods of using classical diagnostic plots sometimes fail to detect them. This phenomenon is known as the masking effect. To avoid this, we propose to find out those multiple outliers by using a highly robust regression estimator called the least median squares (LMS) estimator which has maximal breakdown point. The algorithm in search of the LMS estimator is called the forward search algorithm. The estimator found by the forward search is shown to lead to the rapid detection of multiple outliers. Furthermore, the result reveals that 100 repeats of a simple forward search from a random starting subset are shown to provide sufficiently robust parameter estimators to reveal multiple outliers. Finally, those detected outliers are exhibited by the stalactite plot that shows greatly stable pattern of them.
Referring to multivariate data, the Mahalanobis distance also suffers from the masking effect that can be remedied by using a highly robust estimator called the minimum volume ellipsoid (MVE) estimator. It can also be found by using the forward search algorithm and it also has maximal breakdown point. The detected outliers are then displayed in the stalactite plot.
The second part of this dissertation is the transformation of regression data so that the approximate normality and the homogeneity of the residuals can be achieved. During the process of the forward search, we monitor the quantity of interest called score statistic and some other diagnostic plots. They jointly provide a wealth of information about transformation along with the effect of individual observation on this statistic.
|
85 |
排列檢定法應用於空間資料之比較 / Permutation test on spatial comparison王信忠, Wang, Hsin-Chung Unknown Date (has links)
本論文主要是探討在二維度空間上二母體分佈是否一致。我們利用排列
(permutation)檢定方法來做比較, 並藉由費雪(Fisher)正確檢定方法的想法而提出重標記 (relabel)排列檢定方法或稱為費雪排列檢定法。
我們透過可交換性的特質證明它是正確 (exact) 的並且比 Syrjala (1996)所建議的排列檢定方法有更高的檢定力 (power)。
本論文另提出二個空間模型: spatial multinomial-relative-log-normal 模型 與 spatial Poisson-relative-log-normal 模型
來配適一般在漁業中常有的右斜長尾次數分佈並包含很多0 的空間資料。另外一般物種可能因天性或自然環境因素像食物、溫度等影響而有群聚行為發生, 這二個模型亦可描述出空間資料的群聚現象以做適當的推論。 / This thesis proposes the relabel (Fisher's) permutation test inspired by Fisher's exact test to compare between distributions of two (fishery) data sets locating on a two-dimensional lattice. We show that the permutation test given by Syrjala (1996} is not exact, but our relabel permutation test is exact and, additionally, more powerful.
This thesis also studies two spatial models: the spatial multinomial-relative-log-normal model and the spatial
Poisson-relative-log-normal model. Both models not only exhibit characteristics of skewness with a long right-hand tail and of high proportion of zero catches which usually appear in fishery data, but also have the ability to describe various types of aggregative behaviors.
|
Page generated in 0.0197 seconds