• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

應用資料探勘技術於食譜分享社群網站進行內容分群之研究 / A user-based content clustering system using data mining techniques on a recipe sharing website

林宜儒 Unknown Date (has links)
本研究以一個食譜分享社群網站為研究對象,針對網站上所提供的食譜建立了運用 kNN 分群演算法的自動分群機制,並利用該網站上使用者的使用行為進行分群後群集的特徵描述參考。 本研究以三個階段建立了一針對食譜領域進行自動分群的資訊系統。第一階段為資料處理,在取得食譜網站上所提供的食譜資料後,雖然已經有相對結構化的格式可直接進行分群運算,然而由使用者所輸入的內容,仍有錯別字、贅詞、與食譜本身直接關連性不高等情形,因此必須進行處理。第二階段為資料分群,利用文字探勘進行內容特徵值的萃取,接著再以資料探勘的技術進行分群,分群的結果將會依群內的特徵、群間的相似度作為分群品質的主要指標。第三階段則為群集特徵分析,利用網站上使用者收藏食譜並加以分類的行為,運用統計的方式找出該群集的可能分類名稱。 本研究實際以 500 篇食譜進行分群實驗,在最佳的一次分群結果中,可得到 10 個食譜群集、平均群內相似度為 0.4482,每個群集可觀察出明顯的相似特徵,並且可藉由網站上使用者的收藏行為,標註出其群集特徵,例如湯品、甜點、麵包、中式料理等類別。 由於網站依照schema.org 所提供的食譜格式標準,針對網站上每一篇食譜內容進行了內容欄位的標記,本研究所實作之食譜分群機制,未來亦可運用在其他同樣採用 schema.org 所提供標準之同類型網站。

Page generated in 0.0205 seconds