• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 902
  • 40
  • 34
  • 32
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 3
  • 3
  • Tagged with
  • 1469
  • 467
  • 314
  • 284
  • 199
  • 183
  • 179
  • 174
  • 161
  • 151
  • 147
  • 137
  • 126
  • 121
  • 120
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
781

FUNCTIONAL CONNECTIVITY FOR CONFIGURAL AND FEATURAL FACE PROCESSING IN THE BROAD AUTISM PHENOTYPE

Clark, Jonathan Darrell 01 January 2011 (has links)
During normal development, face processing involves a gradual shift from a featurally oriented style to a mature configural style by adolescence. This shift may coincide with increased right hemispheric dominance for faces supporting configural processing. Previous studies suggest that individuals diagnosed with ASD continue to process faces using individual parts and features into adulthood. This continued bias may be due to deficits in configural processing abilities. The current study investigated measures of functional connectivity during featural and configural processing of faces in broad autism phenotype sibling (ASD-sibs) children compared to age, sex, and handedness matched normal developing (ND) controls and in children diagnosed with an Autism Spectrum Disorder compared to ASD-matched ND controls. Results indicate that children with ASD and ASD-sibs were capable of performing configural processing tasks at similar performance levels to those of ND children. Additionally, patterns of functional network connectivity for configural processing in ASD-sibs were similar to those observed in ND controls. Few network-wide hemispheric differences emerged between groups. While behavioral performance and overall network-wide patterns of connectivity suggest a face processing network that is capable of supporting configural processing in ASD and ASD-sibs, abnormalities were observed in specific regions. The amygdala and fusiform face area showed fewer interactions with the rest of the face processing network in ASD children compared to ND during configural, but not featural processing. Additionally, hemispheric comparisons show greater differences between ASD and ND controls in the right fusiform face area. The ability of these regions to communicate with other regions in the face network could be important for social motivation and attention during configural processing. Interestingly, network connectivity in ASD children during passive viewing of faces, objects, and textures without featural or configural manipulations showed a more functionally integrated, and less segregated network with a lower “wiring cost” during non-face conditions compared to ND children. ASD-sibs may demonstrate a similar milder pattern.
782

CIRCADIAN AND HOMEOSTATIC REGULATION OF SLEEP IN CAST/EiJ AND C57BL/6J MICE

Jiang, Peng 01 January 2011 (has links)
Sleep is essential for mammals and possibly for all animals. Advancing our knowledge of sleep regulation is crucial for the development of interventions in sleep-related health and social problems. With this aim, this study utilizes laboratory mice to explore sleep regulatory mechanisms at behavioral, molecular, and genetic levels. Sleep is regulated by the interaction of circadian and homeostatic processes. The circadian clock facilitates sleep to occur at a favorable time of the day. Normal mice, such as the C57BL/6J (B6) strain, sleep mostly during the day and initiate activities at dark onset. Here, I show mice of the CAST/EiJ (CAST) strain initiate activity unusually early (hours before dark). The circadian gating of photic phase-shifting responses was phase-lagged in the CAST mice relative to their activity rhythms, implying an altered coupling between the clock and its output. Light failed to suppress activity in the CAST mice, allowing full expression of the early activity. A previously identified quantitative trait locus that contributes to the advanced circadian phase was also confirmed and refined to a smaller genomic region. The circadian oscillation and light-induction of clock-genes Per1 and Per2 expression was not different between B6 and CAST mice in the suprachiasmatic nucleus (SCN) of the brain, where the mammalian master circadian clock is located. However, in the cerebral cortex and paraventricular hypothalamic nucleus of CAST mice, Per mRNA oscillations were phase-advanced coordinately with their advanced behavioral rhythms. These data thus provide direct evidence that the cause of the early runner phenotype is located downstream of the master circadian clock. The rhythms of cortical Per expression may not be a result of direct SCN effector mechanisms, but rather driven by activity-rest and sleep-wake. I further show that prolonged waking induces cortical Per expression, and this induction persisted in SCN-lesioned animals. SCN Per expression in intact animals was not affected. Thus, a homeostatic drive, independent of the SCN clock, regulates cortical Per expression, although a possible circadian influence in the intact animals was also suggested by detailed analyses. These data may suggest a molecular mechanism bridging the circadian and homeostatic processes for sleep regulation and functions.
783

ROLE OF CALCIUM AND NITRIC OXIDE SYNTHASE (NOS) IN BRAIN MITOCHONDRIAL DYSFUNCTION

Nukala, Vidya Nag 01 January 2007 (has links)
Mitochondria are essential for promoting cell survival and growth through aerobic metabolism and energy production. Mitochondrial function is typically analyzed using mitochondria freshly isolated from tissues and cells because they yield tightly coupled mitochondria, whereas those from frozen tissue can consist of broken mitochondria and membrane fragments. A method, utilizing a well-characterized cryoprotectant such as dimethyl sulfoxide (DMSO), is described. Such mitochondria show preserved structure and function that presents us with a possible strategy to considerably expand the time-frame and the range of biochemical, molecular and metabolic studies that can be performed without the constraints of mitochondrial longevity ex vivo. Mitochondrial dysfunction is implicated in Alzheimer’s disease (AD) mainly through oxidative stress and altered metabolism. Mitochondria are isolated from post-mortem brain samples from selective regions of AD and control patients and, utilizing the cryopreservation strategy, analyzed for respiration and oxidative damage. While we did not observe increases in free radicals, we did observe decreased respiration and increases in oxidative damage markers in AD patients, suggesting a role for oxidative stress in mitochondrial dysfunction. While in the mitochondria, calcium (Ca2+) increases free radical generation by processes not completely understood. A new isoform of nitric oxide synthase (mtNOS) has been isolated and localized to mitochondria; though its existence and physiological role is debated. Nitric oxide synthase (NOS), when activated by Ca2+, produces nitric oxide (NO•) that can interact with ROS producing various reactive nitrogen species (RNS). These highly reactive radical species can damage DNA, proteins and lipids, ultimately resulting in cell death via apoptosis or necrosis. The current research is aimed at understanding the role of Ca2+ and NOS in oxidative stress leading to mitochondrial dysfunction. We observed a significant reduction in mitochondrial respiration with increasing doses of calcium. We also observed NOS enzyme activity and detected NOS protein in the purified mitochondrial fraction. Lastly, we were also able to show that Ca2+ increased the levels of free radicals and changes in oxidative damage markers. These results suggest the presence of NOS in mitochondria that could play a role in Ca2+ induced mitochondrial dysfunction and potentially leading to cell death as relevant to aging and neurodegenerative diseases.
784

NMDA RECEPTORS IN THE DORSAL VAGAL COMPLEX OF NORMAL AND DIABETIC MICE

Bach, Eva C 01 January 2013 (has links)
The dorsal vagal complex (DVC), containing the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus nerve (DMV), plays a pivotal role in autonomic regulation. Afferent fibers from peripheral organs and higher brain centers synapse in the NTS, which integrates these synaptic connections as well as information from systemically circulating hormones and metabolites. The integrated information is relayed to the dorsal motor nucleus of the vagus nerve (DMV), which in turn, projects motor fibers to elicit parasympathetic control of digestive and other viscera. Physiological functions mediated by the DVC are disrupted in diabetic patients and synaptic plasticity within the DVC has been linked to these complications. N-methyl-D-aspartic acid (NMDA) receptors have been extensively studied for their involvement in synaptic plasticity in a variety of central nervous system disorders; and their activation in the DVC modulates hepatic glucose production and feeding behavior. Although chronic disease can alter NMDA function, changes in DVC expression and/or sensitivity of NMDA receptors in diabetic states has not been addressed. Using whole cell electrophysiology, functional properties of the nuclei in the DVC were investigated in normoglycemic and type 1 diabetic mice. Preterminal NMDA (preNMDA) receptors were discovered to tonically modulate excitatory neurotransmission on terminals contacting DMV neurons. While these preNMDA receptors were not found to differentially modulate tonic excitatory neurotranmission, soma-dendritic NMDA receptor responses of NTS neurons were augmented in type 1 diabetic mice. Through the use single-cell PCR, increased NMDA receptor responses could be correlated to neurons that mediate excitatory neurotransmission and would argue that augmented NMDA receptor responses increase vagal output. In general, enhancing vagal output decreases activity of connected peripheral organs. Molecular approaches were employed to corroborate the observed functional NMDA receptors changes to their protein and mRNA expression levels. Overall, results argue that NMDA receptors are involved in synaptic plasticity in DVC of type 1 diabetic mice to enhance excitatory neurotransmission. This modulation may potentially serve as a physiological counter regulatory mechanism to control pathological disturbances of gastrointestinal homeostatic reflex responses.
785

THE ROLE OF MACROPHAGES IN OLFACTORY NEUROGENESIS

Borders, Aaron S. 01 January 2007 (has links)
Olfactory sensory neurons (OSNs) undergo continual degeneration and replacement throughout life, a cycle that can be synchronized experimentally by performing olfactory bulbectomy (OBX). OBX induces apoptosis of mature OSNs, which is followed by an increase in the proliferation of progenitor basal cells. Macrophages, functionally diverse immune effector cells, phagocytose the apoptotic OSNs and regulate the proliferation of basal cells. This provides an advantageous environment to study how macrophages regulate neuronal death, proliferation, and replacement. The purpose of this dissertation was to identify the cellular and molecular mechanisms by which macrophages regulate the degeneration/proliferation cycle of OSNs. Macrophages were selectively depleted using liposome-encapsulated clodronate (Lip-C). Intranasal and intravenous administration of Lip-C decreased the number of macrophages in the OE of sham and OBX mice by 38% and 35%, respectively, compared to mice treated with empty liposomes (Lip-O). Macrophage depletion significantly decreased OE thickness (22% and 21%, p<0.05), the number of mature OSNs (1.2- and 1.9-fold, p<0.05), and basal cell proliferation (7.6- and 3.8-fold, p<0.05) in sham and OBX mice, respectively, compared to Lip-O mice. Additionally, at 48 h following OBX, OSN apoptosis increased significantly (p<0.05) in the OE of Lip-C mice compared to Lip-O mice. A microarray analysis was performed to identify the genomic changes underlying the cellular changes associated with macrophage depletion. There were 4,024 genes with either a significant interaction between group (Lip-C vs. Lip-O) and treatment (OBX vs. sham) or a significant main effect. There were a number of significantly regulated immune response and cytoskeletal genes, and genes encoding neurogenesis regulators and growth factors, most of which were expressed at lower levels in Lip-C mice compared to Lip-O mice. Sdf1, the ligand for the chemokine receptor Cxcr4 involved in leukocyte trafficking, axon guidance, and cell migration, was localized to macrophages on the protein level. Additionally, the microarray expression pattern of Hdgf, a growth factor that promotes neuronal survival and proliferation, was validated on the protein level using immunohistochemistry. HDGF appeared to be localized to basal cells and OSNs where it could act as a proliferative or survival factor whose expression is regulated in part by macrophages.
786

Dopaminergic and Activity-Dependent Modulation of Mechanosensory Responses in Drosophila Melanogaster Larvae

Titlow, Josh S 01 January 2014 (has links)
A central theme of this dissertation is nervous system plasticity. Activity-dependent plasticity and dopaminergic modulation are two processes by which neural circuits adapt their function to developmental and environmental changes. These processes are involved in basic cognitive functions and can contribute to neurological disorder. An important goal in modern neurobiology is understanding how genotypic variation influences plasticity, and leveraging the quantitative genetics resources in model organisms is a valuable component of this endeavor. To this end I investigated activity-dependent plasticity and dopaminergic modulation in Drosophila melanogaster larvae using neurobiological and genetic approaches. Larval mechanosensory behavior is described in Chapter 2. The behavioral experiments in that chapter provide a system to study mechanisms of plasticity and decision-making, while the electrophysiological characterization shows that sensory-motor output depends on neural activity levels of the circuit. This system is used to investigate activity-dependent plasticity in Chapter 3, i.e., habituation to repetitive tactile stimuli. In Chapter 4, those assays are combined with pharmacological manipulations, genetic manipulations, and other experimental paradigms to investigate dopaminergic modulation. Bioinformatics analyses were used in Chapter 5 to characterize natural genetic variation and the influence of single nucleotide polymorphisms on dopamine-related gene expression. The impact and suggested future directions based on this work are discussed in Chapter 6. Dopamine also modulates cardiomyocytes. Chapter 7 describes biochemical pathways that mediate dopaminergic modulation of heart rate. The final two chapters describe neurobiology research endeavors that are separate from my work on dopamine. Experiments that have helped characterize a role for Serf, a gene that codes for a small protein with previously unknown function, are described in Chapter 8. In the final chapter I describe optogenetic behavioral and electrophysiology preparations that are being integrated into high school classrooms and undergraduate physiology laboratories. Assessment of student motivation and learning outcomes in response to those experiments is also discussed.
787

LEPTIN RESISTANCE INDUCED OBESITY AND DIABETES PROMOTE NEUROPATHOLOGICAL CHANGES IN THE AGING BRAIN

Platt, Thomas 01 January 2014 (has links)
The aging brain is prone to the development of pathology and dementia. With a rapidly growing elderly population diagnoses of neurodegenerative diseases, such as Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease are on the rise. Additionally, diabetes and obesity are linked to an increased risk of dementia. The convergence of this increasingly aged population with the obesity and diabetes epidemic give rise to new concerns regarding the future of prevention and treatment of neurodegenerative diseases. Our lab has previously shown that leptin, an adipokine involved in signaling satiety to the hypothalamus, can modulate the generation of the amyloid beta (Aβ) peptide (a toxic peptide associated with neurologic disease) and attenuate hyperphosphorylation of the tau protein (another peptide prone to forming large insoluble structures causing neurodegeneration). From these studies we have elucidated that leptin resistant mice (which develop severe obesity and type-2 diabetes mellitus) with knock-in mutations for the amyloid precursor protein (APP) and presenilin-1 (PS1) genes develop extensive vascular pathology and cognitive impairments. Interestingly, these mice do not display increased levels of amyloid deposition in the brain. Additionally, increased tau phosphorylation occurs in these mice with leptin resistance. As a follow up to this study db mice were transduced, via adeno-associated virus, with the tau P301L mutant to induce the development of tangle pathology. These mice displayed no cognitive deficits, yet they displayed increases in both tau phosphorylation and tangle count within the hippocampus. Collectively, these studies indicate leptin resistance, obesity, and type-2 diabetes mellitus promote the development of cerebrovascular and neurofibrillary tangle pathologies associated with neurodegeneration and dementia. These observations open many previously unexplored avenues for developing novel therapeutics to treat these devastating diseases.
788

Effets antiépileptiques de la neurostimulation asservie dans un modèle d'épilepsie chez le rat

Saillet, Sandrine 15 December 2010 (has links) (PDF)
Malgré un traitement pharmacologique et chirurgical adapté, les crises d'épilepsie persistent chez environ 20% des patients. La neurostimulation des circuits générateurs et/ou de contrôle des crises constitue actuellement la principale approche thérapeutique non lésionnelle innovante dans certaines formes d'épilepsies pharmaco-résistantes qui ne peuvent bénéficier d'une chirurgie résective curative. L'objectif de ce travail a été de développer un nouveau système de stimulation intracérébrale profonde qui soit efficace pour la suppression des crises sur le long terme sur un modèle d'épilepsie absence chez le rat. Trois points principaux ont été abordés : (i) la caractérisation de l'activité des ganglions de la base (GB) pendant les crises; (ii) le développement d'un système de stimulation asservie sur le principe de "détection/stimulation" des crises; (iii) la quantification des effets antiépileptiques à long terme de la stimulation asservie. Les résultats obtenus ont permis de confirmer l'existence d'une propagation rapide des décharges de pointes ondes (DPO) du cortex vers le thalamus et les GB, et d'un contrôle endogène des crises par la substance noire réticulée (SNr), cible utilisée pour la modulation des crises. Malgré une période réfractaire de 40 s au cours de laquelle la stimulation est inefficace, les effets antiépileptiques de la stimulation asservie de la SNr se sont avérés probants : taux élevé d'interruption des DPO par la stimulation (97%) accompagné d'une diminution de la survenue des DPO au cours du temps. Ces résultats constituent une preuve de concept de l'utilisation de la neurostimulation stimulation asservie dans le traitement de certaines formes d'épilepsie.
789

Plasticité corticale et effet antalgique de la neurostimulation

Houzé, Bérengère 06 June 2011 (has links) (PDF)
Ce travail de thèse a pour principal objectif d'évaluer, au moyen de l'électro-encéphalographie de haute densité (EEG-HD), la plasticité de la représentation somato-sensorielle de la main chez l'Homme induite par neurostimulation non-invasise. Cette étude a pris sa source dans le constat que la stimulation cérébrale du cortex moteur représente une alternative thérapeutique efficace pour les patients qui souffrent de douleurs neuropathiques pharmaco-résistantes. Les mécanismes responsables de l'analgésie induite par la stimulation magnétique trans-crânienne répétitive (rTMS) sont encore mal connus, mais la séduisante hypothèse selon laquelle la stimulation du cortex moteur pouvait induire une plasticité dans le cortex somatosensoriel a été évoquée. Nos travaux de thèse s'attachent à déterminer, chez le sujet sain, les effets de la rTMS réalisée en regard de l'aire motrice de la main sur sa représentation somatotopique dans le cortex somatosensoriel. Dans le premier chapitre de ce document nous décrivons les réseaux anatomiques de transmission et perception somesthésique, avant de revoir dans le Chapitre 2 la littérature pertinente sur la représentation somatotopique du cortex sensoriel primaire (S1). De nombreuses études démontrent que cette représentation n'est nullement figée, mais peut au contraire évoluer suite à des lésions somatosensorielles sous-corticales ou corticales ; la littérature spécifique à ce phénomène de plasticité post-lésionnelle est revue dans le Chapitre 3, ainsi que les données suggérant le rôle de cette plasticité dans le développement de douleurs neuropathiques. Les patients souffrant de ce type de douleurs peuvent avoir recours à la stimulation du cortex moteur, notamment au moyen de techniques non invasives comme la rTMS. Les particularités techniques et les effets physiologiques de cette méthode sont tout d'abord présentés dans le Chapitre 4, avant d'exposer les effets analgésiques de la rTMS. Les travaux réalisés au cours de cette thèse sont exposés sous forme d'articles (Chapitres 5 & 6). Nous avons dans un premier temps cherché à déterminer une méthodologie robuste qui permet d'évaluer la représentation somatotopique de la main à l'aide des Potentiels Evoqués Somesthésiques (PES) obtenus par la stimulation de quatre sites distincts de la main (Auriculaire-Pouce-Nerf Cubital-Nerf Radial). La détermination de la représentation corticale de la main dans S1 était plus reproductible et robuste sur les réponses précoces de l'aire 3b (N20/P20) que sur celle des aires 1-2 (P45). Une estimation adéquate de l'étendue de la main basée sur le couple " pouce - nerf cubital " était possible avec 64 et 128 électrodes. Lorsque l'étendue de la main était considérée avec le couple de stimulation standard " auriculaire - pouce ", le plus haut niveau d'échantillonnage spatial était nécessaire. C'est pourquoi nous avons choisi le premier couple pour l'étude des possibles changements de la représentation corticale de la main suite à l'application de la rTMS, sous deux modalités distinctes (20 Hz et mode theta-burst intermittent -iTBS). Les deux modes de rTMS entraînent une certaine plasticité de la représentation somatotopique de la main dans S1, avec toutefois quelques nuances : les changements liés au mode " theta burst " étaient variables d'un sujet à l'autre et non significatifs sur la mesure d'étendue de la main. La rTMS à 20 Hz quant à elle, induisait des modifications très significatives et bien reproductibles. De plus, ce mode de stimulation était le seul à induire une augmentation du seuil nociceptif. Ces différences peuvent s'expliquer par des mécanismes d'action différents ou par des différences dans le nombre total de stimuli corticaux administrés. Bien que nos résultats suggèrent que la rTMS à haute fréquence est capable d'induire des modifications plastiques significatives et d'augmenter la représentation corticale de la région stimulée, il reste à déterminer si cette plasticité est à même d'être modifié par la rTMS à 20 Hz chez des patients souffrant de douleurs neuropathiques, et dans ce cas si elle est ou non associée aux effets analgésiques induits par ce type de technique non invasive.
790

Transactivation of platelet-derived growth factor receptor type ??: Mechanisms and potential relevance in neurobiology

Kruk, Jeffrey Stephen January 2013 (has links)
In the absence of ligand, certain growth factor receptors can be activated via G protein-coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate the receptor tyrosine kinase (RTK) platelet-derived growth factor (PDGF) ?? receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here, it is shown that 5-HT can transiently increase the phosphorylation of PDGF?? receptors in a time- and concentration-dependent manner in SH-SY5Y neuroblastoma cells. This transactivation pathway was pertussis-toxin sensitive, and was dependent on phospholipase C activity, intracellular calcium signaling and subsequent protein kinase C activation. Exogenous application of non-lethal concentrations of H2O2 induced the phosphorylation of PDGF?? receptors in a concentration-dependent fashion, similar to that observed with 5-HT. Further investigation revealed reactive oxygen species (ROS) production as a necessary component in the transactivation pathway, as scavenging ROS eliminated PDGF?? receptor phosphorylation. NADPH oxidase was determined to be the likely source of ROS given that the NADPH oxidase inhibitors diphenyleneiodonium chloride and apocynin abrogated PDGF?? receptor transactivation. The role of Src tyrosine kinase was also investigated, and its location in this signaling cascade was determined to be downstream of calcium signaling, but upstream of NADPH oxidase activity. In addition, the activation of ERK1/2 in this system was elucidated to be independent of PDGF?? receptor transactivation. Interestingly, 5-HT also transactivated TrkB receptors, another RTK whose function is implicated in clinical depression. Expectedly, the enzymes in this mechanism were consistent with those revealed in 5-HT-to-PDGF?? receptor signaling. This cross-talk between 5-HT and RTKs such as TrkB and PDGF?? receptors identifies a potentially important signaling link between the serotonergic system and neurotrophic factor signaling in neurons that could have implications in mental health disorders including depression. Furthermore, although transactivation pathways are commonly initiated by a GPCR, recent reports have demonstrated that selective serotonin reuptake inhibitors (SSRIs) were able to block 5-HT-induced transactivation of PDGF?? receptors, suggesting that in addition to GPCRs, monoamine transporters may also be involved in RTK transactivation. SH-SY5Y cells pretreated with the SSRI fluoxetine blocked 5-HT-induced transactivation of the PDGF?? receptors, but not PDGF-induced PDGF?? receptor activation. Upon further examination, it was discovered that during the pretreatment period, fluoxetine itself was transiently transactivating the PDGF?? receptor via 5-HT2 receptors. By the end of the pretreatment period, the effects of fluoxetine on PDGF?? receptor phosphorylation had returned to baseline, and a subsequent transactivating stimulus (5-HT) failed to ???re-transactivate??? the PDGF?? receptor. Additional investigations demonstrated that 5-HT pretreatment can block dopamine-induced PDGF?? receptor transactivation, but not PDGF-induced PDGF?? receptor activation. This is the first demonstration of the heterologous desensitization of an RTK via a transactivation pathway, and this phenomenon is specific for transactivation pathways because in all cases the PDGF?? receptor ligand PDGF-BB was able to directly stimulate receptor activity in spite of GPCR agonist pretreatment. Heterologous desensitization in transactivation signaling reveals a previously unknown short-term ???blackout??? period wherein no further transactivation signaling can occur to potentially exploit the mitogenic effects of RTK activation.

Page generated in 0.0474 seconds