• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 902
  • 40
  • 34
  • 32
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 3
  • 3
  • Tagged with
  • 1469
  • 467
  • 314
  • 284
  • 199
  • 183
  • 179
  • 174
  • 161
  • 151
  • 147
  • 137
  • 126
  • 121
  • 120
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
911

Analysis of AKT1 Activity in Alzheimer’s Disease and Schizophrenia Through Kinopedia, an Interactive Application for Kinome Array Data

Joyce, Alex William 11 July 2022 (has links)
No description available.
912

Parasympathetic Nerve Derived Exosomes Inhibit Hyperglycemia Induced Apoptosis in Cardiomyoblast Cells

Singla, Reetish K 01 January 2018 (has links) (PDF)
Diabetic cardiomyopathy involves both forms of cardiac cell cell death such as apoptosis and necrosis. However, this remains unknown whether hyperglycemia induced apoptosis in the cell culture system is inhibited by parasympathetic nerve derived exosomes. We isolated parasympathetic and sympathetic nerves and derived exosomes. We developed hyperglycemia induced apoptosis in H9c2 cells. H9c2 cells were divided into 4 groups: 1) Control, 2) H9c2+ Glucose 100 mmol, 3) H9c2+ Glucose +parasympathetic-exo, 4) H9c2+ Glucose+sympathetic-exo. We determined cell proliferation and viability with MTT assay kit and apoptosis with TUNEL staining and cell death detection ELISA kit. Data was further confirmed with pro-apoptotic proteins caspase-3 and BAX and anti-apoptotic protein Bcl2. High glucose exposed H9c2 cells significantly reduced cell viability which is improved by parasympathetic-exo but not by sympathetic-exo. Increased apoptosis in hyperglycemia in H9c2 cells confirmed with TUNEL staining and cell death ELISA was significantly (p
913

The Role of ER-Alpha and the Ovaries in the Enduring Altered Behavioral Response to Pubertal Immune Stress

Rappleyea, Bethany 01 January 2014 (has links) (PDF)
Peripubertal immune stress alters adult responsiveness to estradiol (E2) and progesterone (P). When female mice are injected with the bacterial endotoxin lipopolysaccharide (LPS) at six weeks of age, or during pubertal development, they display a decrease in response to ovarian hormones. In contrast, females ovariectomized prior to peripubertal immune stress display typical levels of sexual behavior following sequential injections of E2 and P in adulthood. Additionally, intact females exposed to peripubertal immune stress display a decrease in estrogen receptor alpha (ER-α)-immunoreactive (ir) cells in the medial preoptic area (MPOA) and ventromedial nucleus of the hypothalamus (VMH) in adulthood. However, ER-α has not been studied in mice that have been ovariectomized prior to receiving LPS. The objective of the present study is two-fold: to replicate the finding that ovariectomy prior to pubertal development prevents the deleterious effects of LPS administration, and to examine the status of ER-α in areas of the brain important to sex behavior. We predicted that mice ovariectomized after LPS injection would display fewer ER-α-ir cells and a decreased responsiveness to ovarian hormones than saline controls and those mice ovariectomized prior to LPS injection. To test this, female mice were ovariectomized or sham-operated prior to LPS treatment. Then, at six weeks of age, all mice were injected with saline or LPS. Following that, sham-operated mice were ovariectomized and ovariectomized mice were sham-operated. Mice were primed weekly with E2 and P, and sex behavior testing occurred once a week for 5 weeks. After the final behavior test, all mice were euthanized, their brains removed, and stained for ER-α via immunocytochemistry. Results revealed a large variability in hormone responsiveness. However, animals that received peripubertal LPS, but still had their ovaries, had significantly lower sexual receptivity when compared to animals that were ovariectomized prior to the pubertal period and given LPS. Further, there were no differences between groups in ER-α-ir numbers. External environmental stressors, such as animal housing and vibrations and noise from nearby construction, may have caused some of the results found here, which are inconsistent with previous findings.
914

Mdma and Methamphetamine: An Investigation of a Neurochemical and Behavioral Cross-Tolerance in the Rat

Henderson, Christina S 01 January 2009 (has links) (PDF)
We previously found that intermittent administration of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) to adolescent male rats protected against the behavioral and serotonergic neurotoxic effects of a subsequent MDMA binge. Similar results have been reported for the dopamine (DA) neurotoxin methamphetamine (METH). The present study tested the hypothesis that intermittent adolescent MDMA exposure would protect against the DA neurotoxic effects of a METH binge. Male Sprague-Dawley rats were injected s.c. with MDMA (10 mg/kg x 2; 4-h interdose interval) or saline every fifth day from postnatal day (PD) 35 through PD 60. The animals were then challenged with either a low- or high-dose METH binge (4 or 8 mg/kg x 4; 2- h interdose interval) or saline on PD 67. Activity was measured 1 day after the binge, and regional serotonin transporter (SERT) and dopamine transporter (DAT) expression were analyzed at PD 74 by radioligand binding. All animals treated with METH on the challenge day became hyperthermic, independent of pretreatment conditions. Both MDMA-pretreated and drug-naïve rats also showed a dose-dependent hypoactivity 24 h after the first dose of the METH binge. The SERT binding results indicated that adolescent pretreatment with MDMA provided full or partial protection (depending on the brain region) against the serotonergic deficits produced by METH in previously drug-naïve animals. In contrast, MDMA pretreatment failed to protect against METH-induced decreases in striatal DAT binding. These results suggest that the neuroprotective 2 effects of adolescent MDMA pretreatment are confined to the serotonergic system, possibly reflecting a selective upregulation of antioxidant mechanisms in that system.
915

Dopamine Controls Locomotion by Modulating the Activity of the Cholinergic Motor Neurons in C. elegans

Allen, Andrew T 01 January 2009 (has links) (PDF)
Dopamine is an important neurotransmitter in the brain, where it plays a regulatory role in the coordination of movement and cognition by acting through two classes of G protein-coupled receptors to modulate synaptic activity. In addition, it has been shown these two receptor classes can exhibit synergistic or antagonistic effects on neurotransmission. However, while the pharmacology of the mammalian dopamine receptors have been characterized in some detail, less is known about the molecular pathways that act downstream of the receptors. As in mammals, the soil nematode Caenorhabditis elegans uses two classes of dopamine receptors to control neural activity and thus can serve as a genetic tool to identify the molecular mechanisms through which dopamine receptors exert their effects on neurotransmission. To identify novel components of mammalian dopamine signaling pathways, we conducted a genetic screen for C. elegans mutants defective in exogenous dopamine response. We screened 31,000 mutagenized haploid genomes and recovered seven mutants. Five of these mutants were in previously-identified dopamine signaling genes, including those encoding the Ga proteins GOA-1 (ortholog of human Gao) and EGL-30 (ortholog of human Gaq), the diacylglycerol kinase DGK-1 (ortholog of human DGK0), and the dopamine receptor DOP-3 (ortholog of human D2-like receptor). In addition to these known components, we identified mutations in the glutamate-gated cation channel subunit GLR-1 (ortholog of human AMPA receptor subunits) and the class A acetycholinesterase ACE-1 (ortholog of human acetylcholinesterase). Behavioral analysis of these mutants demonstrates that dopamine signaling controls acetylcholine release by modulating the excitability of the cholinergic motor neurons in C. elegans through two antagonistic dopamine receptor signaling pathways, and that this antagonism occurs within a single cell. In addition, a mutation in the putative Rab GTPase activating protein TBC-4 was identified, which may suggest a role for this Rab GAP in synaptic vesicle trafficking. Subsequent behavioral and genetic analyses of mutants in synaptic vesicular trafficking components implicate RAB-3-mediated vesicular trafficking in DOP-3 receptor signaling. These results together suggest a possible mechanism for the regulation of dopamine receptor signaling by vesicular trafficking components in the cholinergic motor neurons of C. elegans.
916

Chemosensitivity of Locus Coeruleus Neurons Decreases with Postnatal Development

Samar, Yasmeen 02 August 2022 (has links)
No description available.
917

Stress reactions by Black females in viewing conflict and no-conflict videotapes of a Black male or female as a function of the subject's blood pressure level and of history of stress

James-andrews, andrea Jean 01 January 1978 (has links)
No description available.
918

Cytoarchitectural Defects Secondary To Experimentally Induced Oligodendrocyte Death In The Adult And Developing Central Nervous System

Caprariello, Andrew Vincent 07 March 2013 (has links)
No description available.
919

AMBIENT OXYGEN AVAILABILITY MODULATES EXPRESSION OF VASCULAR ANGIOGENIC FACTORS AND CAPILLARY REMODELING (ANGIOPLASTICITY) IN THE MOUSE BRAIN

Benderro, Girriso Futara 07 March 2013 (has links)
No description available.
920

MASSIVELY DISTRIBUTED NEUROMORPHIC CONTROL FOR LEGGED ROBOTS MODELED AFTER INSECT STEPPING

Szczecinski, Nicholas S. 12 March 2013 (has links)
No description available.

Page generated in 0.28 seconds