• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 404
  • 222
  • 76
  • 43
  • 19
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 885
  • 89
  • 86
  • 83
  • 80
  • 78
  • 64
  • 63
  • 63
  • 62
  • 56
  • 55
  • 54
  • 52
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Síntese de alfa-alumina nanoestruturada não dopada e dopada com cromo a partir da matéria orgânica natural e resíduos da indústria de curtume

Cunha, Graziele da Costa 01 August 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Alumina nanoparticles are among the most important materials in the ceramic industry due to their variety of potential applications. Currently, there is a search for more economic, eco friendly and efficient routes. In this way, the present work proposes the use of complexing capacity of water rich in Natural Organic Matter (NOM) (24mg L -1 COD) to synthesize nanostructured pigment, based on doped alumina with chrome ions obtained from reagents with high degree of purity of from solid and liquid residues from the tannery industry. In the synthesis process, many parameters were controlled, such as the pH of the precursor solution. It was observed that this parameter played a significant role on the production of particles with small sizes. Using pH 4,0 undoped alfa-alumina was obtained after calcination at 1000ºC/4h. This temperature is at least 200ºC lower than those reported for the production of alumina using sol-gel or Pechini routes. For doped alumina, the calcination conditions were 1100°C/4h, showing that doping had an influence over the phase transition temperature. The XRF data revealed that Cl, Si, Zn, S and Cu are the main impurities in the pure sample, as well as in the sample doped with chrome salts with high purity. On the other hand, the samples doped with recycled chrome contained compounds of calcium and sodium chloride, depending on the type of residue used (solid or liquid). Data from XANES proved that the valence of Cr in the alumina structure is influenced by the degree of purity of the dopant. Micrographs suggest the obtention of structures with spherical morphology, with particle sizes varying from 45 nm to 56 nm, showing that the origin of NOM, its molecular size, water storage conditions and the purity of the dopant has not significantly influenced the morphology or the average size of the particles. The PL and XEOL emission spectra chrome high purity doped alumina revealed a main band near 700 nm, and a dependency on the concentration of chromophore ion, as expected. However, for synthesized samples using recycled chrome ions, neither emission was observed. The physico-chemical and bacteriologic characterization of the recycled water showed that it attends to the standards required from the Brazilian health ministry. Furthermore, during the leaching tests the total chrome concentration was below the equipment detection limits. / As nanopartículas de alumina estão entre os materiais mais importantes na indústria cerâmica por conta de suas diversas aplicações. Atualmente há uma busca por rotas mais econômicas, eco-amigáveis e eficientes. Assim, o presente trabalho propõe o uso da capacidade complexante da água rica em Matéria Orgânica Natural (MON) (24 mg L-1 carbono orgânico dissolvido) para sintetizar pigmento nanoestruturado a base de alumina dopada com íons cromo de elevado grau de pureza (P.A) e com íons obtidos a partir dos resíduos sólidos e líquidos provenientes da industria de curtume. No processo de síntese, avaliou-se vários parâmetros, porém o controle do pH da solução inicial foi o que mais influenciou a obtenção da alfa-alumina nanoestruturada. Os resultados de DRX comprovam a obtenção da fase única alfa-alumina para as amostras obtidas no pH 4,0 e calcinadas 1000°C/4h para alumina não dopada, essa temperatura é pelo menos 200°C inferior à empregada nas principais rotas tradicionais (sol-gel e Pechini). Para a alumina dopada, essa temperatura foi 1100°C/4h. Os dados de XRF revelaram que as principais impurezas presentes na alumina não dopada e dopada com ions cromo P.A são os sequintes: Cl, Si, S e Zn. Enquanto, que para as amostras dopadas com íons cromo reciclados, as pricipais impurezas foram: os compostos de cálcio para as amostras obtidas empregando o residuo liquido e cloreto de sódio para o residuo sólido. O resíduo sólido apresentou características melhores para utilização em pigmentos cerâmicos. Os dados de XANES comprovam a presença de Cr(VI), porém é possivel obter Al2O3:Cr livre dessa valência. As micrografias sugerem a obtenção de estruturas com morfologia esférica, com tamanho das particulas em torno de 56 nm. Os espectros de emissão PL e XEOL da alumina dopada com cromo P.A revelam uma banda principal de emissão em aproximadamente 700 nm, sendo que a eficiencia fotoluminescente e radioliminescente mostrou-se dependente da concentração do ion cromoforo. Porém, para as amostras sintetizadas usando os ions de cromo reciclados verificou-se a supressão dessas propriedades. A caracterização físico-química e bacteriológica da água reciclada mostra que a mesma atende aos padrões de potabilidade exigidos pela Portaria 2914. Ademais, os testes de lixiviação demostraram que não houve liberação do cromo incorporado na matriz da alumina.
612

Análise da influência da porosidade dos eletrodos no desempenho de baterias de beta-alumina de sódio / Analysis of the influence of electrode porosity on the performance of sodium beta-alumina batteries

Samuel da Silveira Martins 09 June 2017 (has links)
Nos últimos anos surgiu um tipo de bateria que tem gerado grande interesse para emprego em bancos de armazenamento estacionário. Tal tecnologia baseia-se na utilização de um eletrólito sólido β/β\'\'-Al2O3 que permite o transporte de íons de sódio entre um eletrodo positivo e um negativo. O eletrólito sólido β/β\'\'-Al2O3 apresenta uma estrutura cristalina diferenciada que permite grande mobilidade dos íons de sódio. O presente trabalho tem como objetivo principal obter eletrólito sólido β/β\'\'-Al2O3, utilizando pós preparados pelo processo mistura de óxidos e avaliar o desempenho elétrico dos eletrólitos com a deposição de filmes do mesmo substrato variando a concentração de sólidos presentes e correlacionar sua condutividade elétrica com sua porosidade. As amostras de β/β\'\'-Al2O3 foram sintetizadas, ocorrendo a formação da fase pretendida em temperaturas superiores a 1100°C. Os teores relativos das fases β/β\'\'-Al2O3 mostrou-se dependente da temperatura. Pós calcinados em temperaturas mais elevadas sofrem volatilização do sódio, sendo o teor máximo obtido da fase β\'\' durante o processo foi de 64%. Amostras sinterizadas em dois estágios, a 1600°C por 20 minutos seguida de tratamento térmico a 1475°C por 2 horas, apresentaram densificação maior em relação à amostras sinterizadas em um estágio. Sua microestrutura sofreu crescimento de grãos formando uma microestrutura duplex com grãos na forma de placas alongadas distribuídas em uma matriz de grãos finos. A partir da caracterização de suspensões aquosas de β/β\'\'-Al2O3 evidenciou a alteração do comportamento reológico exibido por suspensões dos pós cerâmicos em função da concentração em volume de sólidos de seu substrato em: 15%, 20%, 30% e 40%, e então os eletrólitos foram conformados por spin-coating. A técnica de espectroscopia de impedância foi importante na identificação das fases presentes na cerâmica β/β\'\'-Al2O3 e no mecanismo de condução elétrica, ocorrendo condução no volume (grãos), havendo uma condução maior na fase β-alumina. / In recent years has emerged a type of battery that has generated great interest for employment in stationary storage banks. Such technology is based on the use of a solid electrolyte β/β\'\'-Al2O3 that allows the transport of sodium ions between a positive and negative electrode. The solid electrolyte β/β\'\'-Al2O3 presents a differentiated crystalline structure that allows great mobility of the sodium ions. The main objective of this work is to obtain solid electrolyte β/β\'\'-Al2O3, using powders prepared by the process of mixing oxides and to evaluate the electric performance of the electrolytes with the deposition of films of the same substrate varying the concentration of solids present and to correlate their Conductivity with its porosity. The samples of β/β\'\'-Al2O3 were synthesized, with the formation of the desired phase occurring at temperatures above 1100°C. The relative levels of the β/β\'\'-Al2O3 phases were temperature dependent. Post calcined at higher temperatures undergoes sodium volatilization, the maximum obtained content of the phase during the process was 64%. Two-stage sintered samples at 1600°C for 20 minutes followed by heat treatment at 1475°C for 2 hours showed higher densification than sintered samples at one stage. Its microstructure underwent grain growth forming a duplex microstructure with grains in the form of elongated plates distributed in a fine grained matrix. From the formulation of aqueous suspensions of β/β\'\'-Al2O3 showed the alteration of the rheological behavior exhibited by suspensions of the ceramic powders as a function of the volume concentration of their substrate solids in: 15%, 20%, 30% and 40%, And then the electrolytes were formed by spin-coating. The impedance spectroscopy technique was important in the identification of the phases present in the ceramic β/β\'\'-Al2O3 and in the electrical conduction mechanism, occurring conduction in the volume (grains), with a higher conduction in the β-alumina phase.
613

Sintonia do filtro de Kalman para medição indireta das variáveis de estado no banho eletrolitico / Tunning of the Filter of Kalman for indirect measurement of the variable of state in the electrolytic bath

Braga, Carlos Augusto Pereira 07 April 2008 (has links)
Made available in DSpace on 2016-08-17T14:52:48Z (GMT). No. of bitstreams: 1 Carlos Augusto Pereira Braga.pdf: 1145854 bytes, checksum: 8898d3084e223e4e9ad52a8aa7363b01 (MD5) Previous issue date: 2008-04-07 / A tunning model for Kalman filter based on QR duality principle is presented to measure the state variables of the electrolytic bath in aluminium production cells. The main goal is to establish a set of filter gains that better represents the percentual of alumina in the bath. The filter bandwidth tunning is performed by increasing or decreasing the filter bandpass from the Q and R variations. The design and analysis of the Q and R covariance matrices are performed to find a pattern of the resistance variations that could be associated with the alumina concentration in the bath. The technical solution encloses on-line evaluation of the Kalman filter in order to prove its capableness of response when used to control real production cells. The Standard Kalman is coded upon a scalar form to reduce the use of computing resources when the filter is processed. The line current and pot voltage are directly read from the hardware interface and then converted in a third variable, the resistance, which is used to infer the alumina concentration in the bath. Moreover, the filter implementation goes in the direction of practical aspects limits of the indirect measurement system implementations, its robustness is appraised by observability, roundo® and modeling errors. / O controle da concentração de alumina no banho de cubas eletroliticas é de vital importância para um rendimento eficiente do processo de produção de aluminio. Este controle tem por objetivo promover, em uma visão macro, um retorno justificável perante ao planejamento global das metas de produção de uma fábrica de aluminio. O desenvolvimento de uma metodologia baseada no ajuste dos ganhos de um filtro tipo Kalman Padrão é o principal enfoque cientifico e tecnológico desta pesquisa. A sintese da metodologia é a implementação do filtro de Kalman Padrão e Escalar em um computador que controla a quantidade de alumina no banho eletrolitico. Considera-se as restrições de software e de hardware na implantação do algoritmo de Kalman no sistema que executa o controle de processo por computador. Desenvolve-se um modelo de sintonia do filtro de Kalman utilizando-se o principio da dualidade das matrizes Q e R. O objetivo é estabelecer um conjunto de ganhos que representem da melhor forma a quantidade de alumina dentro da cuba. Assim, faz-se uma análise considerando-se mudanças nas matrizes Q e R, e apresenta-se os resultados obtidos. Analisa-se a largura de banda do filtro, verificando-se diminuição ou aumento de banda na medida que as matrizes Q e R sofrem alterações em seus elementos. As estratégias de monitoramento são verificadas para diversas situações de operação(dinâmica) da planta, e as variações paramétricas do modelo são levadas em consideração para garantirmos uma operação robusta e estável do filtro. O desempenho do filtro é verificado em paralelo com um sistema de filtragem e de controle historicamente utilizados na estimação do percentual de alumina no banho eletrolitico.
614

Escafoldes para implantes ósseos em alumina/hidroxiapatita/biovidro: análises mecânica e in vitro / Scaffolds in alumina, hydroxyapatite and bio-glass for bone implants: mechanical tests and in vitro analysis

Claudia Cristiane Camilo 16 August 2006 (has links)
Escafoldes em alumina foram fabricados e em suas superfícies impregnou-se biovidro e hidroxiapatita; realizou-se análise das propriedades mecânica e de interação célula-escafolde in vitro. Estruturas porosas denominadas escafoldes são utilizadas como suportes para crescimento de tecidos, devem apresentar poros abertos interconectados, com morfologia, distribuição e quantidade de poros que confiram resistência mecânica e induzam o crescimento ósseo. Os escafoldes simulam a matriz extracelular e são a chave para a engenharia de tecidos que está conceituada na cultura prévia de células com proteínas morfogenéticas, oferecendo suporte para o crescimento celular na formação do tecido maduro. Neste trabalho desenvolveu-se técnica de manufatura onde foram conformados escafoldes como corpos-de-prova em alumina, em hidroxiapatita e em alumina infiltrada com biovidro e hidroxiapatita. Os escafoldes foram submetidos a ensaios mecânicos de compressão e sofreram análise de interação com células in vitro. A morfologia e a concentração da porosidade dos escafoldes foram analisadas por microscopia de varredura eletrônica e apresentaram porosidade volumétrica de aproximadamente 70% e diâmetro médio de poros em torno de 190 µm. Observou-se interação das células mais vigorosas e com pronunciada mitose nos escafoldes infiltrados relativamente aos escafoldes de alumina e hidroxiapatita. Os resultados indicaram resistência mecânica para os corpos infiltrados de 43,27 MPa, valor inferior ao observado nos escafolde de alumina 52,27 MPa e muito superior aos de hidroxiapatita 0,28 MPa. Conclui-se que os escafoldes de alumina infiltrados com biovidro e hidroxiapatita apresentaram uma combinação promissora nas características mecânicas e biológicas in vitro com viabilidade econômica. / Alumina scaffolds were manufactured and surface impregnated with bio-glass and hydroxyapatite; the mechanical properties and the in vitro bone-cell and scaffold interaction were analyzed. Porous matrices are usually denominated as scaffolds in tissue engineering and they are used as supports for the tissue growing; they may have open and interconnected pores, with known porous geometry and distribution and with good mechanical strength and be able to induce the tissue cells growing. Scaffolds can work as extra cell matrices, mimic the desired tissue and are considered as the key for the tissue engineering, offering support for the cellular growing in the formation of mature tissue. In this work, manufacture techniques were developed where scaffolds were conformed in alumina, in hydroxyapatite and in alumina infiltrated with bio-glass and hydroxyapatite, as test bodies. The scaffolds were submitted to mechanical compression tests and to the interaction with bone cells in vitro. The morphology and the concentration of the scaffold porosity were analyzed by scanning electronic microscopy (SEM) and they presented porosity concentration near 70,0 vol% and medium diameter of pores around 190,0 µm. The cells interaction strongest and more vigorous bone cell interaction with pronounced mitosis was observed in the alumina scaffolds infiltrated with bio-glass and hydroxyapatite when compared with the alumina scaffolds and hydroxyapatite scaffolds. The results obtained shown lower values of the mechanical strength for the infiltrated scaffolds (43,27 MPa), higher values for non infiltrated alumina scaffold (52,27 MPa) and very low values for the hydroxyapatite scaffolds (0,28 MPa). As observed, final results shown that alumina scaffolds infiltrated with bio-glass and hydroxyapatite presented a promising combination in the mechanical and biological in vitro characteristics with economic viability.
615

Etude des différents polymorphes de l'alumine et des phases transitoires apparaissant lors des premiers stades d'oxydation de l'aluminium : simulation à l'échelle atomique par un modèle à charges variables en liaisons fortes / Study of the different polymorphs of alumina and transitional phases appearing in the first oxidation stage of aluminium : simulation at the atomic scale by a model with variable chargs in tight binding

Salles, Nicolas 11 September 2014 (has links)
L’objectif de ce travail consiste à développer un nouveau potentiel SMTB-Q, puis à l’incorporer dans un code de dynamique moléculaire (DM) afin d’étudier les premiers stades de l’oxydation de l’aluminium. Le potentiel peut modéliser les différents polymorphes de l’alumine ainsi qu’une transition de la phase amorphe vers une phase cristalline. Notre approche couple un terme covalent avec la charge. Il utilise le schéma de Rappé et Goddard pour la partie électrostatique et le modèle du réseau alterné de C. Noguera pour la partie covalente. Le potentiel SMTB-Q obtenu est validé par une approche Monte Carlo. Nous y présentons les outils utilisés pour l’optimisation du potentiel ou analyser les résultats obtenus pour les situations hétérogènes. Cette étude permet de montrer que le potentiel SMTB-Q donne une description satisfaisante de la liaison Al-O dans différentes configurations atomiques. Cette liaison résulte de la compétition entre trois contributions énergétiques : électrostatique, covalente et répulsion de Pauli entre les oxygènes. Après son incorporation dans le logiciel LAMMPS, le potentiel SMTB-Q est utilisé en DM pour l'étude d'oxydes à stœchiométrie constante. Les transitions de phases de l’alumine sont étudiées sous haute pression et en température. Le problème du changement de stœchiométrie de l’oxyde est traité à partir de l'étude de diverses structures de différentes stœchiométries. Nous introduirons la liaison métallique dans le potentiel. La superposition des liaisons iono-covalentes et métalliques sera étudiée pour des systèmes métal/oxyde. Enfin, nous discuterons du formalisme du potentiel SMTB-Q face au changement de stœchiométrie dans l’oxyde. / The goal of this work is to develop a new SMTB-Q potential in order to study the early stages of the oxidation of aluminium by molecular dynamics (MD).Our potential is able to model different alumina polymorphs as well as transitions from the amorphous state to a crystalline phase. Our approach couples a covalent term with the charge. It uses Rapp_ and Goddard scheme for the electrostatic part and the model of alternating network developed by C. Noguera for the covalent part.The SMTB-Q potential was validated with a Monte Carlo approach. This study shows that the potential SMTB-Q gives satisfactory results for the Al-O bonding in different atomic configurations. The bonding results from the competition between three energy contributions: electrostatic, covalent and Pauli repulsion between the oxygens.After implementation in the LAMMPS software, the potential SMTB-Q is used to study by DM constant stoichiometry oxides. Alumina phase transitions are observed under high pressure and temperature. We also introduce the metallic bonding in the potential. The superposition of the iono-covalent and metallic bonds was investigated for metal / oxide systems. Finally, we discuss the formalism of the SMTB-Q potential to take into account the change of stoichiometry in the oxide.
616

Influência da temperatura de sinterização nas propriedades mecânicas de molas de alumina injetadas em baixa pressão

Barbieri, Rodrigo Antonio 22 February 2011 (has links)
Neste trabalho foram produzidas molas cerâmicas através do processo de moldagem por injeção em baixa pressão, utilizando-se como matéria-prima alumina submicrométrica, aditivada com ligantes a base de ceras. Dentro do tanque de uma injetora Pelstman, estes materiais foram homogeneizados e resultaram em uma suspensão de baixa viscosidade. Entre os objetivos deste trabalho estão a produção de molas cerâmicas helicoidais com perfil circular, a extração dos ligantes orgânicos utilizados durante a moldagem, a pré-sinterização das molas a 1000°C, o acabamento e a sinterização das molas em diferentes temperaturas e a medida de algumas de suas propriedades. A mudança na temperatura de sinterização é uma maneira simples de alterar as propriedades das molas cerâmicas, sem alterar sua composição ou suas dimensões. Foram produzidos três lotes de molas de alumina, que foram sinterizadas a 1550°C, 1600°C e 1650°C, com o objetivo de verificar os efeitos da temperatura sobre a constante de mola e a tensão de fratura. As molas de alumina sinterizada foram obtidas com densidades variando de 94,0% para 97,5% do limite teórico. As constantes de mola foram medidas desde a temperatura ambiente até 1100°C. Os dados obtidos nos ensaios de fratura sob compressão foram analisados de acordo com a estatística deWeibull e o método da máxima verossimilhança. Com o aumento da temperatura de sinterização, de 1550°C até 1650°C, foi observado que a constante de mola e a resistência característica de Weibull das molas de alumina aumentaram em 15% e 32%, respectivamente. Por outro lado, a temperatura de sinterização não teve muita influência sobre o módulo de Weibull. Isso acontece porque as bolhas internas e os defeitos superficiais introduzidos na fase de conformação das molas cerâmicas, possuem um efeito pronunciado na fratura das molas, mais importante do que a redução da porosidade com o aumento da temperatura de sinterização, e são fundamentais para determinar a resistência à compressão das molas cerâmicas. / In this work, ceramic coil springs was prepared by low-pressure injection molding using alumina submicrometer-sized powder. The powder are mixed with organic binders in the Pelstman machine tank for several hours resulting in a mixture with low viscosity. This work include the production of helical ceramic springs, thermal debinding, sintering in different temperatures and measure some properties. Sintering temperature was shown to be a simple way to change the spring constant and resistence to compression of ceramics without having a significant impact in the spring´s physical dimensions. Three sets of springs were sintered at different temperatures, from 1550°C to 1650°C, in order to observe the effects on spring constant and fracture stress. Sintered alumina springs were obtained with densities ranging from 94.0% to 97.5% of the theoretical limit. Springs constants were measured from room temperature up to 1100°C. Fracture stress data was analyzed according to Weibull statistics and the maximum likelihood method. Upon increase of sintering temperature from 1550°C to 1650°C, the spring constant and the Weibull characteristic strength of the alumina springs increases by 15% and 32%, respectively. On the other hand, sintering temperature has a negligible influence on Weibull modulus. This is because internal bubbles and surface defects introduced in the production stage of the ceramic springs - more than the reduction in porosity with increasing sintering temperature - are critical in determining the compression resistance of the ceramic springs.
617

Mikrosenzory plynů založené na samouspořádaných 3D nanovrstvách oxidů kovů / Gas Microsensors Based on Self-Organized 3D Metal-Oxide Nanofilms

Pytlíček, Zdeněk January 2017 (has links)
This dissertation concerns the development, fabrication and integration in a gas sensing microdevice of a novel 3-dimensional (3D) nanostructured metal-oxide semiconducting film that effectively merges the benefits of inorganic nanomaterials with the simplicity offered by non-lithographic electrochemistry-based preparation techniques. The film is synthesized via the porous-anodic-alumina-assisted anodizing of an Al/Nb metal bilayer sputter-deposited on a SiO2/Si substrate and is basically composed of a 200 nm thick NbO2 layer holding an array of upright-standing spatially separated Nb2O5 nanocolumns, being 50 nm wide, up to 900 nm long and of 8109 cm2 population density. The nanocolumns work as semiconducting nano-channels, whose resistivity is greatly impacted by the surface and interface reactions. Either Pt or Au patterned electrodes are prepared on the top of the nanocolumn array using an innovative sensor design realized by means of microfabrication technology or via a direct original point electrodeposition technique, followed by selective dissolution of the alumina overlayer. For gas-sensing tests the film is mounted on a standard TO-8 package using the wire-bonding technique. Electrical characterization of the 3D niobium-oxide nanofilm reveals asymmetric electron transport properties due to a Schottky barrier that forms at the Au/Nb2O5 or Pt/Nb2O5 interface. Effects of the active film morphology, structure and composition on the electrical and gas-sensing performance focusing on sensitivity, selectivity, detection limits and response/recovery rates are explored in experimental detection of hydrogen gas and ammonia. The fast and intensive response to H2 confirms the potential of the 3D niobium-oxide nanofilm as highly appropriate active layer for sensing application. A computer-aided microfluidics simulation of gas diffusion in the 3D nanofilm predicts a possibility to substantially improve the gas-sensing performance through the formation of a perforated top electrode, optimizing the film morphology, altering the crystal structure and by introducing certain innovations in the electrode design. Preliminary experiments show that a 3D nanofilm synthesized from an alternative Al/W metal bilayer is another promising candidate for advanced sensor applications. The techniques and materials employed in this work are advantageous for developing technically simple, cost-effective and environmentally friendly solutions for practical micro- and nanodevices, where the well-defined nano-channels for charge carriers and surface reactions may bring unprecedented benefits.
618

Functional coatings for steel melt filtration

Schmidt, Anne 29 March 2022 (has links)
In order to considerably improve the quality of steel products, efforts are being made to increase the cleanness of steel. It is known that the size, type and distribution of non-metallic inclusions (NMIs) in metals significantly influence their mechanical properties. Within the frame of the Collaborativ Research Centre 920 'Multifunc-tional filters for metal melt filtration – a contribution to zero defect materials.”, carbon-bonded alumina filters for steel melt filtration has been investigated. In the present thesis, the interactions between coated carbon-bonded alumina filters and a steel melt were investigated in more detail, with the porous coatings being based on alumina. The time-depended behaviour was evaluated by immersing coated filters for different dwell times. After the immersion tests, the microstructure of the filter surface and the NMIs remaining in the solidified steel were examined to comprehend the interactions. The here presented results imply that carbon of the carbon-bonded alumina sub-strate took part in the filter–steel interactions. The presence of dissolved carbon at the filter–steel melt interface is essential to promote alumina dissolution and pre-cipitation processes. Thereby, the melt was locally supersaturated with aluminium, which reacted with dissolved oxygen to form secondary corundum. During these interactions, a liquid oxide film was formed directly at the ceramic surface and provided nuclei for heterogeneous nucleation of secondary corundum. After immersion during cooling, a characteristic layer built-up formed at the filters surface. All alumina-based coated filters contributed to the filtration of especially alumina-based NMIs, and outperformed the uncoated carbon-bonded alumina filter. During the first experimental trials, it became obvious that the thermal shock resistance of the alumina coating has to be enhanced. For this purpose, a material combination was investigated which so far has not been used as a coating material to the author’s knowledge: alumina-zirconia-titania in the ration 95 : 2.5 : 2.5. This material is known for its excellent thermal shock resistance. Thereby, the influence of zirconia or titania doping of the coating were considered. The addition of titania enhanced wetting of this filter by the steel melt. As a result, alumina inclusions of the steel melt were modified: they were more in number, but distinctly smaller compared to trials without filter or the immersion of the other filter types. Especially, the decreased average area of the alumina inclusions is interesting because the particle size of NMIs strongly influences the fatigue life of a steel product. The deformability of a steel product, however, is determined by the amount of NMIs. Thus, the modification of alumina inclusions by adding titania to the filter coating might present a way to tailor these inclusions depending on the product’s application.
619

Controlling the Formation and Stability of Alumina Phases

Andersson, Jon Martin January 2005 (has links)
In this work, physical phenomena related to the growth and phase formation of alumina, Al2O3, are investigated by experiments and computer calculations. Alumina finds applications in a wide variety of areas, due to many beneficial properties and several existing crystalline phases. For example, the α and κ phases are widely used as wear-resistant coatings due to their hardness and thermal stability, while, e.g., the metastable γ and θ phases find applications as catalysts or catalyst supports, since their surface energies are low and, hence, they have large surface areas available for catalytic reactions. The metastable phases are involved in transition sequences, which all irreversibly end in the transformation to the stable α phase at about 1050 °C. As a consequence, the metastable aluminas, which can be grown at low temperatures, cannot be used in high temperature applications, since they are destroyed by the transformation into α. In contrast, α-alumina, which is the only thermodynamically stable phase, typically require high growth temperatures (~1000 °C), prohibiting the use of temperature sensitive substrates. Thus, there is a need for increasing the thermal stability of metastable alumina and decreasing the growth temperature of the α phase. In the experimental part of this work, hard and single-phased α-alumina thin films were grown by magnetron sputtering at temperatures down to 280 °C. This dramaticdecrease in growth temperature was achieved by two main factors. Firstly, the nucleation stage of growth was controlled by pre-depositing a chromia “template” layer, which is demonstrated to promote nucleation of α-alumina. Secondly, it is shown that energetic bombardment was needed to sustain growth of the α phase. Energy-resolved mass spectrometry measurements demonstrate that the likely source of energetic bombardment, in the present case, was oxygen ions/atoms originating from the target surface. Overall, these results demonstrate that low-temperature α-alumina growth is possible by controlling both the nucleation step of growth as well as the energetic bombardment of the growing film. In addition, the mass spectrometry studies showed that a large fraction of the deposition flux consisted of AlO molecules, which were sputtered from the target. Since the film is formed by chemical bonding between the depositing species, this observation is important for the fundamental understanding of alumina thin film growth. In the computational part of the work, the effect of additives on the phase stability of α- and θ-alumina was investigated by density functional theory calculations. A systematic study was performed of a large number of substitutional dopants in the alumina lattices. Most tested dopants tended to reverse the stability between α- and θ-alumina; so that, e.g., Modoping made the θ phase energetically favored. Thus, it is possible to stabilize the metastable phases by additives. An important reason for this is the physical size of the dopant ions with respect to the space available within the alumina lattices. For example, large ions induced θ stabilization, while ions only slightly larger than Al, e.g., Co and Cu, gave a slight increase in the relative stability of the α phase. We also studied the stability of some of these compounds with respect to pure alumina and other phases, containing the dopants, with the result that phase separations are energetically favored and will most likely occur at elevated temperatures.
620

Alumina Thin Film Growth: Experiments and Modeling

Wallin, Erik January 2007 (has links)
The work presented in this thesis deals with experimental and theoretical studies related to the growth of crystalline alumina thin films. Alumina, Al2O3, is a polymorphic material utilized in a variety of applications, e.g., in the form of thin films. Many of the possibilities of alumina, and the problems associated with thin film synthesis of the material, are due to the existence of a range of different crystalline phases. Controlling the formation of the desired phase and the transformations between the polymorphs is often difficult. In the experimental part of this work, it was shown that the thermodynamically stable alpha phase, which normally is synthesized at substrate temperatures of around 1000 °C, can be grown using reactive sputtering at a substrate temperature of 500 °C by controlling the nucleation surface. This was done by predepositing a Cr2O3 nucleation layer. Moreover, it was found that an additional requirement for the formation of the α phase is that the depositions are carried out at low enough total pressure and high enough oxygen partial pressure. Based on these observations, it was concluded that energetic bombardment, plausibly originating from energetic oxygen, is necessary for the formation of α alumina (in addition to the effect of the chromia nucleation layer). Further, the effects of impurities, especially residual water, on the growth of crystalline films were investigated by varying the partial pressure of water in the ultra high vacuum (UHV) chamber. Films deposited onto chromia nucleation layers exhibited a columnar structure and consisted of crystalline α-alumina if deposited under UHV conditions. However, as water to a partial pressure of 1x10-5 Torr was introduced, the columnar growth was interrupted. Instead, a microstructure consisting of small, equiaxed grains was formed, and the gamma-alumina content was found to increase with increasing film thickness. When gamma-alumina was formed under UHV conditions, no effects of residual water on the phase formation was observed. Moreover, the H content was found to be low (< 1 at. %) in all films. Consequently, this shows that effects of residual gases during sputter deposition of oxides can be considerable, also in cases where the impurity incorporation in the films is found to be low. In the modeling part of the thesis, density functional theory based computational studies of adsorption of Al, O, AlO, and O2 on different alpha-alumina (0001) surfaces have been performed. The results give possible reasons for the difficulties in growing the α phase at low temperatures through the identification of several metastable adsorption sites, and also provide insights related to the effects of hydrogen on alumina growth. / Report code: LiU-TEK-LIC-2007:1.

Page generated in 0.0337 seconds