• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 39
  • 22
  • 21
  • 12
  • 7
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 197
  • 35
  • 35
  • 29
  • 25
  • 24
  • 24
  • 23
  • 21
  • 19
  • 18
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Consecutive Orthogonal Arrays on Design of Power Electronic Circuits

Yen, Hau-Chen 16 January 2003 (has links)
An approach with ¡§consecutive orthogonal arrays (COA)¡¨ is proposed for solving the problems in designing power electronic circuits. This approach is conceptually based on the orthogonal array method, which has been successfully implemented in quality engineering. The circuit parameters to be determined are assigned as the controlled variables of the orthogonal arrays. Incorporating with the inferential rules, the average effects of each control variable levels are used as the indices to determine the control variable levels of the subsequent orthogonal array. By manipulating on COA, circuit parameters with the desired circuit performances can be found from an effectively reduced number of numerical calculations or experimental tests. In this dissertation, the method with COA is implemented on solving four problems often encountered in the design of power electronic circuits. The first problem one has to deal with is to find a combination with the best performance from a great number of analyzed results. The illustrative example is the design of LC passive filters. Using COA method, the desired component values of the filter can be effectively and efficiently found with far fewer calculations. The second design problem arises from the non-linearity of circuit. An experienced engineer may be able to figure out circuit parameters with satisfactory performance based on their pre-knowledge on the circuit. Nevertheless, they are always questioned whether a better choice can be made. The typical case is the self-excited resonant electronic ballast with the non-linear characteristics of the saturated transformer and the power transistor storage-time. In this case, the average effects of COA obtained from experimental tests are used as the observational indexes to search a combination of circuit parameters for the desired lamp power. The third problem is that circuit functions are mutually exclusive. The designers are greatly perplexed to decide the circuit parameters, with which all functions should be met at the same time. The method with COA is applied to design a filter circuit to achieve the goals of low EMI noise and high power factor simultaneously. Finally, one has to cope with the effects of the uncontrolled variables, such as: ambient temperature, divergence among different manufacturers, and used hours. By applying COA with inferential rules, electronic ballasts can be robustly designed to operate fluorescent lamps at satisfied performance under the influence of these uncontrolled variables.
122

Highly Mismatched GaAs(1-x)N(x) and Ge(1-x)Sn(x) Alloys Prepared by Ion Implantation and Ultrashort Annealing

Gao, Kun 12 January 2015 (has links) (PDF)
Doping allows us to modify semiconductor materials for desired properties such as conductivity, bandgap, and / or lattice parameter. A small portion replacement of the highly mismatched isoelectronic dopants with the host atoms of a semiconductor can result in drastic variation of its structural, optical, and / or electronic properties. Here, the term "mismatch" describes the properties of atom size, ionicity, and / or electronegativity. This thesis presents the fabrication of two kinds of highly mismatched semiconductor alloys, i.e., Ge(1-x)Sn(x) and GaAs(1-x)N(x). The structural and optical properties of the prepared Ge(1-x)Sn(x) and GaAs(1-x)N(x) have been investigated. The results suggest an efficient above-solubility doping induced by non-equilibrium methods of ion implantation and ultrashort annealing. Pulsed laser melting promotes the regrowth of monocrystalline Ge(1-x)Sn(x), whereas flash lamp annealing brings about the formation of high quality GaAs(1-x)N(x) with room temperature photoluminescence. The bandgap modification of Ge(1-x)Sn(x) and GaAs(1-x)N(x) has been verified by optical measurements of spectroscopic ellipsometry and photoluminescence, respectively. In addition, effective defect engineering in GaAs has been achieved by flash lamp annealing, by which a quasi-temperature-stable photoluminescence at 1.3 µm has been obtained. / Dotierung ermöglicht es, die Eigenschaften von Halbleitermaterialien, wie Leitfähigkeit, aber auch Bandabstand und / oder Gitterkonstanten gezielt zu verändern. Wenn ein Halbleiter mit einer kleinen Menge unterschiedliche Fremdatome dotiert wird, kann dies in einer drastischen Modifikation der strukturellen, optischen und / oder elektronischen Eigenschaften resultieren. Der Begriff "unterschiedlich" bedeutet hier die Eigenschaften von Atomgröße, Ioniztät und / oder Elektronegativität. Diese Doktorarbeit beschreibt die Herstellung von zwei Arten von stark fehlangepassten Halbleiterlegierungen: Ge(1-x)Sn(x) und GaAs(1-x)N(x). Die strukturellen und optischen Eigenschaften von Ge(1-x)Sn(x) und GaAs(1-x)N(x) wurden untersucht. Die Ergebnisse deuten auf eine effiziente Dotierung oberhalb der Löslichkeit, induziert durch die Nicht-Gleichgewichtsverfahren Ionenimplantation und Ultrakurzzeit-Ausheilung. Gepulstes Laserschmelzen ermöglicht das Nachwachsen von monokristallinem Ge(1-x)Sn(x), während die Blitzlampenausheilung in der Bildung von GaAs(1-x)N(x) hoher Qualität mit Photolumineszenz bei Raumtemperatur resultiert. Die Änderung der Bandlücke von Ge(1-x)Sn(x) und GaAs(1-x)N(x) wurde durch die optischen Methoden der spektroskopischen Ellipsometrie und Photolumineszenz verifiziert. Darüber hinaus konnte in ausgeheiltem GaAs eine quasi-temperaturstabile Photolumineszenz bei 1,3 µm beobachtet werden.
123

Optimization Of Microwave-halogen Lamp Baking Of Bread

Demirekler, Pinar 01 June 2004 (has links) (PDF)
The main objective of this study was to optimize the processing conditions of breads baked in halogen lamp-microwave combination oven by using response surface methodology. It was also aimed to construct neural network models for the prediction of quality parameters of bread as a function of processing conditions. Different baking time and power combinations were used in order to find the optimum baking conditions of bread in halogen lamp-microwave combination oven. The independent variables were the baking time (4, 4.5, 5, 5.5, and 6 min), power of upper and lower halogen lamps (40, 50, 60, 70, and 80%), and power of the microwave (20, 30, 40, 50, and 60%). As control, breads baked in conventional oven at 200&ordm / C for 13 min were used. The measured quality parameters were the weight loss, color change, specific volume, porosity, and texture profile of the breads. Baking time, upper halogen lamp power, and microwave power were found to be significant on affecting most of the quality parameters. On the other hand, lower halogen lamp power was found to be an insignificant factor for all of the responses. For the optimization process, Response Surface Methodology (RSM) was used. The optimum baking conditions were determined as 5 min of baking time at 70% upper halogen lamp power, 50% lower halogen lamp power, and 20% microwave power. Breads baked at the optimum condition had comparable quality with conventionally baked ones. When halogen lamp-microwave combination oven was used, conventional baking time of breads was reduced by 60%. Artificial neural network models were developed for each of the quality parameters in order to observe the effects of the baking time and different oven conditions on the quality of the breads. High regression coefficients were calculated between the experimental data and predicted values showing that this method is capable in predicting quality parameters of breads during halogen lamp-microwave combination baking. In addition, the results were comparable to the RSM study.
124

Development and characterization of a low thermal budget process for multi-crystalline silicon solar cells

Krockert, Katja 12 January 2016 (has links) (PDF)
Higher conversion efficiencies while reducing costs at the same time is the ultimate goal driving the development of solar cells. Multi-crystalline silicon has attracted considerable attention because of its high stability against light soaking. In case of solar grade multi-crystalline silicon the rigorous control of metal impurities is desirable for solar cell fabrication. It is the aim of this thesis to develop a new manufacturing process optimized for solar-grade multi-crystalline silicon solar cells. In this work the goal is to form solar cell emitters in silicon substrates by plasma immersion ion implantation of phosphine and posterior millisecond-range flash lamp annealing. These techniques were chosen as a new approach in order to decrease the production cost by reducing the amount of energy needed during fabrication. Therefore, this approach is called “Low Thermal Budget” process. After ion implantation the silicon surface is strongly disordered or amorphous up to the depth of the projected ion range. Therefore, subsequent annealing is required to remove the implantation damage and activate the doping element. Flash lamp annealing in the millisecond-range is demonstrated here as a very promising technique for the emitter formation at an overall low thermal budget. During flash lamp annealing, only the wafer surface is heated homogeneously to high temperatures at a time scales of ms. Thereby, implantation damages are annealed and phosphorous is electrically activated. The variation of pulse time allows to modify the degree of annealing of the bulk region to some extent as well. This can have an influence on the gettering behavior of metallic impurities. Ion implantation doping got in distinct consideration for doping of single-crystalline solar cells very recently. The efficient doping of multi-crystalline silicon remains the main challenge to reduce costs. The influence of different annealing techniques on the optical and electrical properties of multi-crystalline silicon solar cells was investigated. The Raman spectroscopy showed that the silicon surface is amorphous after ion implantation. It could be demonstrated that flash lamp annealing at 1000 °C for 3 ms even without preheating is sufficient to recrystallize implanted silicon. The sheet resistance of flash lamp annealed samples is in the range of about 60 Ω/□. Without surface passivation the minority carrier diffusion length in the flash lamp annealed samples is in the range of 85 µm. This is up to one order of magnitude higher than that observed for rapid thermal or furnace annealed samples. The highest carrier concentration and efficiency as well as the lowest resistivity were obtained after annealing at 1200 °C for 20 ms for both, single- and multi-crystalline silicon wafers. Photoluminescence results point towards phosphorous cluster formation at high annealing temperatures which affects metal impurity gettering within the emitter. Additionally, in silicon based solar cells, hydrogen plays a fundamental role due to its excellent passivation properties. The optical and electrical properties of the fabricated emitters were studied with particular interest in their dependence on the hydrogen content present in the samples. The influence of different flash lamp annealing parameters and a comparison with traditional thermal treatments such as rapid thermal and furnace annealing are presented. The samples treated by flash lamp annealing at 1200 °C for 20 ms in forming gas show sheet resistance values in the order of 60 Ω/□, and minority carrier diffusion lengths in the range of ~200 µm without the use of a capping layer for surface passivation. These results are significantly better than those obtained from rapid thermal or furnace annealed samples. The simultaneous implantation of hydrogen during the doping process, combined with optimal flash lamp annealing parameters, gave promising results for the application of this technology in replacing the conventional phosphoroxychlorid deposition and diffusion.
125

A Novel, Low-Cost Viral Load Diagnostic for HIV-1 and Assessing Barriers to Adoption of Technology in Tanzania

January 2011 (has links)
abstract: HIV/AIDS is the sixth leading cause of death worldwide and the leading cause of death among women of reproductive age living in low-income countries. Clinicians in industrialized nations monitor the efficacy of antiretroviral drugs and HIV disease progression with the HIV-1 viral load assay, which measures the copy number of HIV-1 RNA in blood. However, viral load assays are not widely available in sub-Saharan Africa and cost between 50-$139 USD per test on average where available. To address this problem, a mixed-methods approach was undertaken to design a novel and inexpensive viral load diagnostic for HIV-1 and to evaluate barriers to its adoption in a developing country. The assay was produced based on loop-mediated isothermal amplification (LAMP). Blood samples from twenty-one individuals were spiked with varying concentrations of HIV-1 RNA to evaluate the sensitivity and specificity of LAMP. Under isothermal conditions, LAMP was performed with an initial reverse-transcription step (RT-LAMP) and primers designed for HIV-1 subtype C. Each reaction generated up to a few billion copies of target DNA within an hour. Presence of target was detected through naked-eye observation of a fluorescent indicator and verified by DNA gel electrophoresis and real-time fluorescence. The assay successfully detected the presence of HIV in samples with a broad range of HIV RNA concentration, from over 120,000 copies/reaction to 120 copies/reaction. In order to better understand barriers to adoption of LAMP in developing countries, a feasibility study was undertaken in Tanzania, a low-income country facing significant problems in healthcare. Medical professionals in Northern Tanzania were surveyed for feedback regarding perspectives of current HIV assays, patient treatment strategies, availability of treatment, treatment priorities, HIV transmission, and barriers to adoption of the HIV-1 LAMP assay. The majority of medical providers surveyed indicated that the proposed LAMP assay is too expensive for their patient populations. Significant gender differences were observed in response to some survey questions. Female medical providers were more likely to cite stigma as a source problem of the HIV epidemic than male medical providers while males were more likely to cite lack of education as a source problem than female medical providers. / Dissertation/Thesis / Ph.D. Molecular and Cellular Biology 2011
126

Desenvolvimento de metodologia do projeto do reator eletrônico auto-oscilante com entrada universal / Development of methodology of self-oscillating electronic ballast design with universal input

Lopes, Juliano de Pelegrini 14 January 2010 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / This work presents the design and analysis of an electronic system with universal input to supply a fluorescent lamp. The system includes a self-oscillating electronic ballast and an additional circuit which allows keeping the nominal lamp power although a variation of the input voltage. The electronic ballast design comprises some steps: resonant filter design, self-oscillating gate driver design, additional circuit design and stability test. The electronic ballast is represented as a nonlinear control system in order to achieve a feasible design methodology. Moreover, the system must be analyzed considering the describing function method and the extended Nyquist stability criterion. The proposed electronic ballast must maintain the main characteristics of the traditional self-oscillating electronic ballast. Besides that, the additional circuit has a small number of components and it allows the input voltage full range with automatic selection of the switching frequency. The design, simulation and experimental results of the prototype are presented. / Este trabalho apresenta a análise e o projeto de um sistema eletrônico com entrada universal para alimentação de lâmpadas fluorescentes. O sistema é composto por um reator eletrônico auto-oscilante com um circuito adicional, que permite manter a potência da lâmpada no valor nominal independente da tensão de alimentação. O projeto do reator eletrônico é dividido em etapas, que compreendem o projeto do filtro ressonante, do comando auto-oscilante, do circuito adicional e a análise da oscilação auto-sustentada. Para viabilizar uma metodologia de projeto adequada, o reator eletrônico é representado como um sistema de controle. Para análise e projeto são utilizados a função descritiva e o critério de estabilidade estendido de Nyquist. O reator eletrônico mantém as principais características do reator eletrônico auto-oscilante tradicional. Além disso, o circuito adicional possui um número reduzido de componentes, o que permite empregar o reator eletrônico em qualquer rede de alimentação monofásica sem a necessidade de ajuste manual para escolha da tensão de alimentação. São apresentados resultados de simulação e experimentais do protótipo implementado.
127

RÃdio poste da quadra: a participaÃÃo dos moradores e as disputas sonoras em uma comunidade em Fortaleza / The lamp post radio of Quadra: community participation and sound disputes in a community in Fortaleza

Milena de Castro Ribeiro 04 May 2016 (has links)
Esta pesquisa se propÃe a compreender as relaÃÃes participativas e de convivÃncia entre os moradores da comunidade SÃo Vicente de Paulo (Quadra) e a rÃdio poste Centro de ComunicaÃÃo Alternativa, localizada no bairro Aldeota, em Fortaleza (CearÃ). A partir da pesquisa participante (BrandÃo, 1984; 2006) como metodologia, foi possÃvel investigar a histÃria de criaÃÃo da rÃdio poste, refletir sobre as diversas formas de participaÃÃo (Bordenave, 1983) de dois grupos de moradores da Quadra, jovens catÃlicos e mulheres evangÃlicas, e compreender a relaÃÃo deles com a rÃdio dentro da convivÃncia com as paisagens sonoras (Schafer, 2011) da comunidade. Entre as consideraÃÃes finais, foi possÃvel entender que a participaÃÃo de jovens e mulheres religiosos na rÃdio deu-se atravÃs da mobilizaÃÃo dos prÃprios grupos religiosos. Por fim, o campo ainda proporcionou momentos interventivos, durante o aniversÃrio do programa âRecordar à Viverâ e participaÃÃo no projeto de reforma da rÃdio. Este percurso de pesquisa tambÃm me fez perceber que a intervenÃÃo esteve presente desde minhas primeiras aproximaÃÃes com a Quadra. PorÃm, antes, pesquisa e intervenÃÃo pareciam se distanciar. Agora, concluo que as metodologias participativas unem esses processos. / This research aims to understand the participatory coexistence and relations between the residents of SÃo Vicente de Paulo community (Quadra) and the radio post Centro de ComunicaÃÃo Alternativa, located in Aldeota district, in Fortaleza (CearÃ). From the participatory research (BrandÃo, 1984; 2006) as a methodology, it was possible to investigate the history of creation of the post radio, consider about the various forms of participation (Bordenave, 1983) of two groups of residents of Quadra, young Catholics and evangelical women, and understand their relationship within the radio in the living with soundscapes (Schafer, 2011) community. Among the final comments, it was possible to understand that the participation of young women and religious radio was given by mobilizing of their own religious groups. Finally, the course of this research also provided interventional times during the anniversary of the program "Remembering is living" and participation in the radio reform. This search path also made me realize that the intervention has been present since my first contact with Quadraâs community. However at first, research and intervention seemed to be distance. I concluded that the participatory methodologies unite these processes.
128

Integration of III-V compound nanocrystals in silicon via ion beam implantation and flash lamp annealing

Wutzler, René 07 December 2017 (has links) (PDF)
The progress in device performance of modern microelectronic technology is mainly driven by down-scaling. In the near future, this road will probably reach a point where physical limits make even more down-scaling impossible. The substitution of single components materialwise over the last decades, like high-k dielectrics or metal gates, has been a suitable approach to foster performance improvements. In this scheme, the integration of high-mobility III-V compound semiconductors as channel materials into Si technology is a promising route to follow for the next one or two device generations. III-V integration, today, is conventionally performed by using techniques like molecular beam epitaxy or wafer bonding which utilize solid phase crystallization but suffer to strain due to the lattice mismatch between III-V compounds and Si. An alternative approach using sequential ion beam implantation in combination with a subsequent flash lamp annealing is presented in this work. Using this technique, nanocrystals from various III-V compounds have been successfully integrated into bulk Si and Ge as well as into thin Si layers which used either SOI substrates or were grown by plasma-enhanced chemical vapour deposition. The III-V compounds which have been fabricated are GaP, GaAs, GaSb, InP, InAs, GaSb and InxGa1-xAs with variable composition. The structural properties of these nanocrystals have been investigated by Rutherford backscattering, scanning electron microscopy and transmission electron microscopy, including bright-field, dark-field, high-resolution, high-angle annular dark-field and scanning mode imaging, electron-dispersive x-ray spectroscopy and energy-filtered element mapping. Furthermore, Raman spectroscopy and X-ray diffraction have been performed to characterise the nanocrystals optically. In Raman spectroscopy, the characteristic transversal and longitudinal optical phonon modes of the different III-V compounds have been observed. These signals proof that the nanocrystals have formed by the combination of ion implantation and flash lamp annealing. Additionally, the appearance of the typical phonon modes of the respective substrate materials verifies recrystallization of the substrate by the flash lamp after amorphisation during implantation. In the bulk Si samples, the nanocrystals have a circular or rectangular lateral shape and they are randomly distributed at the surface. Their cross-section has either a hemispherical or triangular shape. In bulk Ge, there are two types of precipitates: one at the surface with arbitrary shape and another one buried with circular shape. For the thin film samples, the lateral shape of the nanocrystals is more or less arbitrary and they feature a block-like cross-section which is limited in height by the Si layer thickness. Regarding crystalline quality, the nanocrystals in all samples are mainly single-crystalline with only a few number of stacking faults. However, the crystalline quality in the bulk samples is slightly better than in the thin films. The X-ray diffraction measurements display the (111), (220) and (311) Bragg peaks for InAs and GaAs as well as for the InxGa1-xAs where the peaks shift with increasing In content from GaAs towards InAs. The underlying formation mechanism is identified as liquid phase epitaxy. Hereby, the ion implantation leads to an amorphisation of the substrate material which is then molten by the subsequent flash lamp annealing. This yields a homogeneous distribution of the implanted elements within the melt due to their strongly increased diffusivity in the liquid phase. Afterwards, the substrate material starts to recrystallize at first and an enrichment of the melt with group-III and group-V elements takes place due to segregation. When the temperature is low enough, the III-V compound semiconductor starts to crystallize using the recrystallized substrate material as a template for epitaxial growth. In order to gain control over the lateral nanocrystal distribution, an implantation mask of either aluminium or nickel is introduced. Using this mask, only small areas of the samples are implanted. After flash lamp treatment, nanocrystals form only in these small areas, which allows precise positioning of them. An optimal implantation window size with an edge length of around 300nm has been determined to obtain one nanocrystal per implanted area. During an additional experiment, the preparation of Si nanowires using electron beam lithography and reactive ion etching has been conducted. Hereby, two different processes have been investigated; one using a ZEP resist, a lift-off step and a Ni hard mask and another one using a hydrogen silsesquioxane resist which is used directly as a mask for etching. The HSQ-based process turned out to yield Si nanowires of better quality. Combining both, the masked implantation and the Si nanowire fabrication, it might be possible to integrate a single III-V nanocrystal into a Si nanowire to produce a III-V-in-Si-nanowire structure for electrical testing. / Der Fortschritt in der Leistungsfähigkeit der Bauelemente moderner Mikroelektroniktechnologie wird hauptsächlich durch das Skalieren vorangetrieben. In naher Zukunft wird dieser Weg wahrscheinlich einen Punkt erreichen, an dem physikalische Grenzen weiteres Herunterskalieren unmöglich machen. Der Austausch einzelner Teile auf Materialebene, wie Hoch-Epsilon-Dielektrika oder Metall-Gate-Elektroden, war während der letzten Jahrzehnte ein geeigneter Ansatz, um die Leistungsverbesserung voranzubringen. Nach diesem Schema ist die Integration von III-V-Verbindungshalbleiter mit hoher Mobilität ein vielversprechender Weg, dem man für die nächsten ein oder zwei Bauelementgenerationen folgen kann. Heutzutage erfolgt die III-V-Integration konventionell mit Verfahren wie der Molekularstrahlepitaxie oder dem Waferbonden, welche die Festphasenkristallisation nutzen, die aber aufgrund der Gitterfehlanpassung zwischen III-V-Verbindungen und Silizium an Verspannungen leiden. In dieser Arbeit wird ein alternativer Ansatz präsentiert, welcher die sequenzielle Ionenstrahlimplantation in Verbindung mit einer darauffolgenden Blitzlampentemperung ausnutzt. Mit Hilfe dieses Verfahrens wurden Nanokristalle verschiedener III-V-Verbindungshalbleiter erfolgreich in Bulksilizium- und -germaniumsubstrate sowie in dünne Siliziumschichten integriert. Für die dünnen Schichten wurden hierbei entweder SOI-Substrate verwendet oder sie wurden mittels plasmagestützer chemischer Gasphasenabscheidung gewachsen. Die hergestellten III-V-Verbindungen umfassen GaP, GaAs, GaSb, InP, InAs, InSb und InxGa1-xAs mit veränderbarer Zusammensetzung. Die strukturellen Eigenschaften dieser Nanokristalle wurden mit Rutherford-Rückstreu-Spektroskopie, Rasterelektronenmikroskopie und Transmissionselektronenmikroskopie untersucht. Bei der Transmissionelektronenmikroskopie wurden die Hellfeld-, Dunkelfeld-, hochauflösenden, “high-angle annular dark-field” und Rasteraufnahmemodi sowie die energiedispersive Röntgenspektroskopie und die energiegefilterte Elementabbildung eingesetzt. Darüber hinaus wurden Ramanspektroskopie- und Röntgenbeugungsmessungen durchgeführt, um die Nanokristalle optisch zu charakterisieren. Mittels Ramanspektroskopie wurden die charakteristischen transversal- und longitudinal-optischen Phononenmoden der verschiedenen III-V-Verbindungen beobachtet. Diese Signale beweisen, dass sich unter Verwendung der Kombination von Ionenstrahlimplantation und Blitzlampentemperung Nanokristalle bilden. Weiterhin zeigt das Vorhandensein der typischen Phononenmoden der jeweiligen Substratmaterialien, dass die Substrate aufgrund der Blitzlampentemperung rekristallisiert sind, nachdem sie durch Ionenimplantation amorphisiert wurden. In den Bulksiliziumproben besitzen die Nanokristalle eine kreisförmige oder rechteckige Kontur und sind in zufälliger Anordnung an der Oberfläche verteilt. Ihr Querschnitt zeigt entweder eine Halbkugel- oder dreieckige Form. Im Bulkgermanium gibt es zwei Arten von Ausscheidungen: eine mit willkürlicher Form an der Oberfläche und eine andere, vergrabene mit sphärischer Form. Betrachtet man die Proben mit den dünnen Schichten, ist die laterale Form der Nanokristalle mehr oder weniger willkürlich und sie zeigen einen blockähnlichen Querschnitt, welcher in der Höhe durch die Siliziumschichtdicke begrenzt ist. Bezüglich der Kristallqualität sind die Nanokristalle in allen Proben mehrheitlich einkristallin und weisen nur eine geringe Anzahl an Stapelfehlern auf. Jedoch ist die Kristallqualität in den Bulkmaterialien ein wenig besser als in den dünnen Schichten. Die Röntgenbeugungsmessungen zeigen die (111), (220) und (311) Bragg-Reflexe des InAs und GaAs sowie des InxGa1-xAs, wobei sich hier die Signalpositionen mit steigendem Gehalt an Indium von GaAs zu InAs verschieben. Als zugrundeliegender Bildungsmechanismus wurde die Flüssigphasenepitaxie identifiziert. Hierbei führt die Ionenstrahlimplantation zu einer Amorphisierung des Substratmaterials, welches dann durch die anschließende Blitzlampentemperung aufgeschmolzen wird. Daraus resultiert eine homogene Verteilung der implantierten Elemente in der Schmelze, da diese eine stark erhöhte Diffusivität in der flüssigen Phase aufweisen. Danach beginnt zuerst das Substratmaterial zu rekristallisieren und es kommt aufgrund von Segregationseffekten zu einer Anreicherung der Schmelze mit den Gruppe-III- und Gruppe-V-Elementen. Wenn die Temperatur niedrig genug ist, beginnt auch der III-V-Verbindungshalbleiter zu kristallisieren, wobei er das rekristallisierte Substratmaterial als Grundlage für ein epitaktisches Wachstum nutzt. In der Absicht Kontrolle über die laterale Verteilung der Nanokristalle zu erhalten, wurde eine Implantationsmaske aus Aluminium beziehungsweise Nickel eingeführt. Durch die Benutzung einer solchen Maske wurden nur kleine Bereiche der Proben implantiert. Nach der Blitzlampentemperung werden nur in diesen kleinen Bereichen Nanokristalle gebildet, was eine genaue Positionierung dieser erlaubt. Es wurde eine optimale Implantationsfenstergröße mit einer Kantenlänge von ungefähr 300 nm ermittelt, damit sich nur ein Nanokristall pro implantierten Bereich bildet. Während eines zusätzlichen Experiments wurde die Präparation von Siliziumnanodrähten mit Hilfe von Elektronenstrahllithografie und reaktivem Ionenätzen durchgeführt. Hierbei wurden zwei verschiedene Prozesse getestet: einer, welcher einen ZEP-Lack, einen Lift-off-Schritt und eine Nickelhartmaske nutzt, und ein anderer, welcher einen HSQ-Lack verwendet, der wiederum direkt als Maske für die Ätzung dient. Es stellte sich heraus, dass der HSQ-basierte Prozess Siliziumnanodrähte von höherer Qualität liefert. Kombiniert man beides, die maskierte Implantation und die Siliziumnanodrahtherstellung, miteinander, sollte es möglich sein, einzelne III-V-Nanokristalle in einen Siliziumnanodraht zu integrieren, um eine III-V-in-Siliziumnanodrahtstruktur zu fertigen, welche für elektrische Messungen geeignet ist.
129

Skyrmion-hosting B20-type MnSi films on Si substrates grown by flash lamp annealing

Li, Zichao 08 October 2021 (has links)
The aim of the current thesis was to investigate the preparation of MnSi film on Si substrates. The preparation process includes room temperature sputtering Mn films with different thicknesses and flash-lamp annealing with different energy density (annealing temperature). Systematic investigations on their structural, electrical, magnetic, and magneto-transport properties were performed. The key findings are summarized below: Thin films with the B20-MnSi phase on Si(100) substrates were fabricated for the first time. They exhibit magnetic skyrmion behaviour. In comparison with Si(111) substrates, Si(100) substrates are more preferred from the practical application point of view. The nucleation of B20-MnSi on Si(100) is believed to be triggered by the fast solid-state phase reaction between Mn and Si via ms-range flash-lamp annealing. Compared with the corresponding bulk material, our films show an increased Curie temperature of around 43 K. The magnetic and transport measurements reveal that skyrmions in B20-MnSi on Si(100) made by sub-seconds solid-state reaction are stable within much broader field and temperature windows than bulk MnSi. The parasitic MnSi1.7 phase can be further minimized or eliminated by optimizing the annealing conditions, the quality of the deposited Mn film, and its interface with the Si substrate. Our work demonstrates a promising route for the fabrication of B20-type transition metal silicides for integrated and/or hybrid spintronic applications on Si(100) wafers, which are more preferable for industry applications. The growth of MnSi films on Si(111) substrates has been widely realized by solid phase epitaxy or molecular beam epitaxy since the lattice mismatch and symmetry fit better. One problem is the parasitic MnSi1.7 phase. By controlling the reaction parameters using strongly non-equilibrium flash lamp annealing, we have achieved full control over the phase formation of Mn-silicides in thin films from single-phase B20-MnSi or MnSi1.7 to mixed phases. The obtained films are highly textured and reveal sharp interfaces to the Si substrate. The obtained B20-MnSi films exhibits a high Curie temperature of 41 K. The skyrmion phase can be stabilized over broad temperature and magnetic field ranges. We propose flash-lamp-annealing-induced transient reaction as a general approach for phase separation in transition-metal silicides and germanides and for growth of B20-type films with enhanced topological stability. By comparing the magnetic properties of MnSi films grown on both Si(111) and Si(100) substrates by ourselves and by others in literature, we found one common feature. It is the increased Curie temperature of around 41-43 K for all MnSi films. It is much higher than 29.5 K for bulk MnSi. We try to understand the puzzling Curie temperature widely reported in MnSi films. We have prepared MnSi films with a large variation regarding their thickness, crystallinity, strain and phase separation. Particularly, polycrystalline MnSi films on Si(100) and textured MnSi films on Si(111), both with different mixture ratio with MnSi1.7 have been grown and systematically characterized. Surprisingly, all obtained MnSi films exhibit a high Curie temperature at around 43 K. The skyrmion phase has also been detected in these films. However, we find no correlation between the increased Curie temperate and the film thickness, strain, lattice volume or the mixture with MnSi1.7. Our work has not provided a conclusive picture for this question, but is rather calling a revisit, especially to the effect by the interface, stoichiometry and point defects. Further studies are essential to understand the B20 transition-metal silicide/germanides films and therefore to utilize them for spintronic applications.:Contents Abstract iii Kurzfassung v 1. Introduction 1 1.1 B20 compounds and magnetic skyrmions 1 1.2 B20 MnSi with magnetic Skyrmions 8 1.2.1 Crystallization process 10 1.2.2 Phase diagram of Mn-Si binary compounds 13 1.2.3 Bulk B20-MnSi 14 1.2.4 B20-MnSi thin film 18 1.2.5 B20-MnSi nanowire 25 1.3 Fast annealing method 27 1.4 Objectives and the structure of the thesis 30 2. Experiment 32 2.1 Sample preparation 32 2.1.1 DC magnetron sputtering 32 2.1.2 Sub-second annealing 35 2.2 Structure characterization: X-ray diffraction 40 2.3 Property characterization 41 2.3.1 Magnetic properties 41 2.3.2 Magneto-transport properties 44 3. B20-MnSi films grown on Si(100) substrates with magnetic skyrmion signature 46 3.1 Introduction 46 3.2 Experiment 47 3.3 Results and Discussions 48 3.4 Conclusions 56 4. Phase selection in Mn-Si alloys by fast solid-state reaction with enhanced skyrmion stability 57 4.1 Introduction 57 4.2 Experiment 59 4.3 Results 61 4.3.1 MnSi and MnSi1.7 phase reaction 61 4.3.2 Magnetic Skyrmion 68 4.3.3 Discussion 76 4.4 Conclusion 78 5. On the Curie temperature of MnSi films 80 5.1 Introduction 80 5.2 Experiment 82 5.3 Results 83 5.4 Conclusion 89 6. Summary and outlook 90 6.1 Summary 90 6.2 Outlook 91 6.2.1 Film thickness effect on formation of (111)-textured B20-MnSi 91 6.2.2 MnSi1.7% influence on Skyrmion stability 96 6.2.3 Preparation of other transition-metal monosilicides and germanides 98 Acknowledgement 99 References 101 Publication list 117 Curriculum Vitae 119 Erklärung 120
130

Short wavelength UV–LED photoinitiated radical polymerization of acrylate–based coating systems—A comparison with conventional UV curing.

Torfgård, Olof January 2021 (has links)
The present work was performed at Sherwin–Williams Sweden group AB with the objective of comparing short-wavelength light emitting diodes (UVB/UVC) with the conventional mercury arc lamp as a curing method of acrylate-based, UV-paint undergoing free-radical polymerization when exposed to UV-radiation. Due to environmental and health risks, mercury-doped radiation sources will be phased out in the near future, according to the United Nations Minamata convention, hence new alternatives are needed. Light-emitting diodes differ from the mercury arc lamp as they provide semi-discrete output intensity lines within the UV spectrum instead of a broad output distribution with several main intensity lines. The power output is also considerably lower compared to the conventional method which limits the irradiance and dose that are key parameters in activating and propagating free-radical polymerization of UV-paint. Seven different light-emitting diodes between 260–320 nm was examinedand compared to the conventional mercury arc lamp. Cured coatings were evaluated by measuring the relative extent of acrylate conversion with ATR-FTIR and micro-hardness indentation test. Both methods correlate to the relative cross-linking density and qualitatively describe the curing process for each radiant source at a specific irradiance and dose. Three different paint formulations with widely different properties were used in the experiments. All three paints were able to cure with one or several light emitting diodes at comparable doses and 10 to 20 times lower irradiance to the conventional mercury arc lamp, resulting in similar acrylate conversion and hardness.

Page generated in 0.0394 seconds