251 |
Chloride Channel 2 and Protein Kinase C Epsilon Protein Module in Ischemic Preconditioning of Rabbit CardiomyocytesKuzmin, Elena 12 February 2010 (has links)
Cardiac ischemic preconditioning (IPC) is defined as brief periods of ischemia and reperfusion that protect the heart against longer ischemia and reperfusion. IPC triggers Cl- efflux and protein kinase C epsilon (PKCe) translocation to the particulate fraction. Chloride channel 2 (ClC-2) is volume regulated and is a potential end effector of IPC. The goal of my study was to investigate the involvement of PKCε and ClC-2 protein module in IPC of isolated adult rabbit ventricular myocytes. Co-immunoprecipitation (co-IP) assays on HEK 293 cells, transfected with ClC-2-Flag, confirmed that ClC-2 interacts with PKCe. Subcellular fractionation showed that PKCe/ClC-2 protein module is localized to the sarcolemma of cardiomyocytes. Lastly, ischemia/reperfusion injury was simulated in cardiomyocytes with 45min simulated ischemia (SI)/60min simulated reperfusion (SR) and IPC was induced by pre-treatment with 10min SI/20min SR. Co-IP after each time interval showed that IPC transiently enhanced PKCe/ClC-2 interaction. PKC inhibitor, GF109203X, abrogated the enhanced interaction.
|
252 |
Studies of Proteins that Regulate Melanin Synthesis and DistributionAmsen, Eva 23 September 2009 (has links)
Melanin is the major component of skin-, hair-, and eye pigmentation in mammals. Synthesis of melanin takes place in specialized organelles in melanocytes, called melanosomes. As melanosomes mature during pigment synthesis, they are transported towards the tips of dendrites in the melanocyte, and eventually transferred to neighbouring keratinocytes to distribute pigment throughout the skin. A large number of proteins regulate melanin synthesis and distribution. Over one hundred genes have been associated with coat colour mutations in mice, and many of these genes have also been identified in human pigmentation disorders. Other proteins involved in pigmentation are part of pathways that are not unique to pigmentation alone, such as the Ras/ERK pathway. In mouse B16 cells, cAMP stimulation leads to the upregulation of melanin synthesis and dendrite extension. However, cAMP also activates the Ras/ERK pathway in these cells, which, upon prolonged stimulation, leads to an inhibition of melanin synthesis and dendrite extension. Here I show that the protein CNrasGEF, which was previously identified in our lab, is responsible for cAMP-dependent Ras activation in B16 cells, and therefore a part of the negative regulatory pathway of melanogenesis. In order to find other proteins involved in pigmentation pathways, I have developed a method to detect melanosomes using Cellomics KineticScan (KSR) high-content image analysis. This system could potentially be used in a high-throughput RNA interference screen to identify proteins that affect melanosome formation or transport. However, in a pilot study it appeared that knockdown levels achieved upon transient transfection
of knockdown constructs from a mouse shRNAmir library against selected targets were in many cases not sufficient to detect an effect on melanocytes, either by confocal microscopy, or by Cellomics KSR analysis. Further reduction of expression levels is necessary before this system can be scaled up to high-content/high-throughput identification of proteins involved in pigmentation.
|
253 |
Polarity Control in Migrating Vascular Smooth Muscle Cells: N-cadherin Localization and FunctionSabatini, Peter Jarrod Bruno 09 March 2010 (has links)
Vascular endothelial cell loss initiates directional migration of medial smooth muscle cells into the arterial intima contributing to in-stent restenosis, atherosclerosis and coronary arterial by-pass graft failure. N-cadherin is a cell-cell adhesion molecule that mediates the interaction between vascular endothelial cells and the innermost smooth muscle cells to stabilize the arterial wall. Upon injury, I reasoned that relocalization of N-cadherin on the inner most smooth muscle cells to the posterior-lateral borders stimulates cell polarization to enable directional migration. Using an in vitro scratch-wound model to stimulate cell polarity and locally remove cell-cell contacts at one pole of smooth muscle cells, I found that N-cadherin localization provides signaling cues via a Cdc42/GSK pathway that promote polarized reorganization of the cytoskeleton and directional cell migration. I also found that N-cadherin was important to functions of lamellipodia at the anterior of migrating cells. In lamellipodia, actin polymerization drives protrusion of the leading edge and coincident, but more posterior, actin depolymerization results in retrograde flow of actin and associated plasma membrane structures. Using live cell imaging, I found that clusters of N-cadherin-GFP repeatedly accumulated at the leading edge specifically at the neck of large pinocytotic vesicles called macropinosomes that were internalized and transported away from the leading edge. This localization is consistent with a role for N-cadherin in closure and scission of vesicles during macropinocytosis.
These are the first studies to examine polarity in migrating vascular smooth muscle cells, and advance our understanding concerning cell-cell adhesions in controlling directional cell migration. My results suggest that N-cadherin may serve as a viable target for the treatment of arterial stenosis that would limit smooth muscle cell migration and stabilize the arterial wall. Furthermore, I report on a novel localization and function of N-cadherin in the biogenesis of macropinosomes in the lamellipodia that contribute to cell protrusion.
|
254 |
Intracellular Signaling Pathways Regulating Hepatic Apolipoprotein B100 Production: Roles of Mitogen-activated Protein Kinases (MAPKs) and Inhibitor of NFkappaB Kinase (IKK)-NFkappaBTsai, Julie 03 March 2010 (has links)
Apolipoprotein B100 (apoB), the structural protein component of triglyceride-rich very low density lipoprotein (VLDL) and atherogenic low density lipoprotein, is considered an important risk indicator of atherosclerosis. In insulin resistant states, hepatic overproduction of apoB leads to metabolic dyslipidemia, characterized by high circulating VLDL and hypertriglyceridemia. Since the mitogen-activated protein kinases (MAPKs) and the inhibitor of NFkappaB kinase (IKK)-NFkappaB cascades are perturbed in insulin resistance, we hypothesized that the MAPKs (ERK, p38 and JNK) and the IKK-NFkappaB pathways regulate hepatic apoB output. We modulated these pathways in HepG2, a human hepatoma cell line, and primary hamster hepatocytes using chemical inhibitors and protein overexpression. ApoB synthesis and secretion were examined by metabolic pulse labeling. HepG2 is typically defective in secreting apoB as large VLDL particles and secretes smaller triglyceride-poor apoB-particles. Under continuous pulse labeling, ERK inhibition not only increased apoB secretion, it enabled HepG2 to secrete VLDL-sized particles in the presence of exogenous fatty acid (oleate). Concomitant with the increased apoB-particle size, ERK inhibition raised intracellular triglyceride level and diacylglycerol acyltransferase (DGAT) 1 and DGAT2 mRNA levels. Conversely, ERK activation decreased VLDL-apoB secretion from primary hepatocytes. In contrast to ERK, p38 or JNK inhibition decreased apoB secretion without affecting apoB-particle size from oleate-treated HepG2 cells. JNK inhibition also modulated apoB levels in primary hamster hepatocytes. Interestingly, the development of diet-induced hepatic insulin resistance was associated with decreased ERK, and enhanced p38 and NFkappaB activities. Thus we investigated the role of the NFkappaB pathway in regulating hepatic apoB production. IKK inhibition decreased and IKK overexpression increased apoB levels by modulating apoB mRNA translation and protein stability. IKK inhibition also suppressed hepatic apoB overproduction in an insulin resistance model, the fructose-fed hamster. Altogether, our results suggest that among the MAPK cascades, the MEK-ERK pathway is crucial in regulating apoB-lipoprotein assembly, possibly by modulating lipid availability to newly-synthesized apoB. The inflammatory IKK-NFkappaB cascade is also involved in regulating apoB synthesis and secretion. We postulate that dysregulation in the MAPK or NFkappaB cascades in insulin resistant and inflammatory states may contribute to hepatic apoB overproduction, and the common phenotype of hypertriglyceridemia and dyslipidemia.
|
255 |
Stem Cells of the Neural and Pancreatic LineagesSmukler, Simon 03 March 2010 (has links)
In this thesis, I describe studies identifying and characterizing two putative stem cell populations of the neural and pancreatic lineages. The mechanisms governing the emergence of the earliest mammalian neural cells during development and the ontogeny of neural stem cells remain incompletely characterized. A default mechanism has been suggested to underlie neural fate acquisition, however an instructive process has also been proposed. I utilized mouse ES cells to explore the fundamental issue of how an uncommitted, pluripotent mammalian cell will self-organize in the absence of extrinsic signals, and what cellular fate will result. Individual ES cells were found to rapidly transition directly into neural cells by a default mechanism, a process shown to be independent of suggested instructive factors. Further, I provide evidence that the default neural identity is that of a primitive neural stem cell, the earliest identified stem cell of the neural lineage. The exiguous conditions used to reveal the default state were found to present primitive neural stem cells with a survival challenge, which could be mitigated by survival factors or genetic interference with apoptosis. I also report the clonal identification of multipotent precursor cells, PMPs, from the adult mouse and human pancreas. These cells proliferate in vitro to form clonal colonies and display both pancreatic and neural cell multipotentiality. Importantly, the newly generated beta cells demonstrate glucose-dependent calcium responsiveness and regulated insulin release. PMP colonies do not express markers of embryonic stem cells, nor genes suggestive of mesodermal or neural crest origins. Moreover, genetic lineage-labeling experiments excluded the neural crest, and established the embryonic pancreatic lineage, as the developmental source of PMPs. The PMP cell was further found to express insulin in vivo, and insulin+ stem cells were shown to contribute to multiple pancreatic and neural cell populations in vivo. These findings demonstrate that the adult mammalian pancreas contains a population of insulin+ multipotent stem cells, capable of contributing to the pancreatic and neural lineages. In the final section of this thesis, I consider the relationships between neural and pancreatic tissues, as well as discussing the relevance of these two novel stem cell populations.
|
256 |
Mesodermal Differentiation of Skin-derived Precursor cellsLavoie, Jean-Francois 30 August 2010 (has links)
Neural crest stem cells (NCSCs) are embryonic multipotent cells that give rise to a wide range of cell types that include those forming the peripheral neural cells and the mesodermal cells of the face including the facial bones. In neonatal and adult skin, skin-derived precursor cells (SKPs) are multipotent dermal precursors that share similarities with NCSCs and can differentiate into peripheral neural and mesodermal cells, such as adipocytes. Based on the similarities between SKPs and NCSCs, I asked, in this thesis, whether rodent or human SKPs can differentiate into skeletal mesodermal cell types by determining their ability to differentiate into osteoblasts and chondrocytes. In culture, rodent and human SKPs differentiated into alkaline phosphatase-, osteopontin- and type-I collagen-positive osteoblasts that produced mineral deposits and into type-II collagen expressing chondrocytes. Clonal analysis showed that SKPs are multipotent for the osteogenic and chondrogenic lineages. To ask whether SKPs can generate these cells in vivo, genetically-tagged naïve rat SKPs were transplanted into a tibia bone fracture model. Six weeks post-transplantation, SKP-derived osteoblasts and osteocytes were present in the newly formed bone, showing their osteogenic differentiation in vivo. At three weeks post-transplantation, some of the injected cells differentiated into hypertrophic chondrocytes in the callus and others into perivascular cells in areas just outside the callus. To test whether it is the local environment that dictates the phenotype of transplanted SKPs, GFP-tagged undifferentiated rat SKPs were injected into the hypodermis of the skin, an adipogenic environment. Four weeks post-transplantation, SKPs differentiated into adipocytes, but not in inappropriate cell types. These results further the known differentiation potential of SKPs, show that local environment of a bone fracture or the hypodermis of the skin is sufficient to induce the differentiation of undifferentiated SKPs into appropriate cell types and suggest the use of SKPs as source of mesodermal precursor cells for cell therapy.
|
257 |
Characterization of BMP Signalling Pathways Mediated by the BMP Type II Receptor, BMPRII, Regulating Neuronal MorphogenesisPodkowa, Monika 01 September 2010 (has links)
Bone Morphogenetic Proteins (BMPs) regulate numerous biological processes including neuronal development. The growth and morphological differentiation of dendrites are critical events in the establishment of proper neuronal connectivity and neural function. One extrinsic factor, BMP7, has been shown to specifically affect dendritic morphogenesis. Here, I describe the elucidation of novel signalling mechanisms involving the BMP type II receptor, BMPRII, during BMP7-dependent dendrite formation. The carboxy-terminal tail of BMPRII binds regulators of the cytoskeleton, and acts as a scaffold to localize and coordinate cytoskeletal remodelling. BMP7-induced localized remodelling of the actin and microtubule cytoskeleton mediated by BMPRII-bound LIMK1 and JNK, contributes to BMP7-dependent dendrite formation. In addition, in efforts to understand how BMP-induced activation of LIMK1 and JNK is regulated, upstream regulators, Rho GTPase, Cdc42, a Rho GTPase effector, PAK1, and a guanine exchange factor (GEF), αPIX, were identified as novel interacting partners of the BMP type I receptor, ALK2. Thus, elucidation of the molecular mechanisms governing BMP7-dependent dendrite formation, defines the extracellular cue, BMP7, as a critical regulator of cytoskeletal dynamics in neurons.
|
258 |
The Role of Telomerase Reverse Transcriptase in TumorigenisisTaboski, Michael 17 February 2011 (has links)
The acquisition and maintenance of cell division potential are important characteristics of tumorigenesis. Human telomerase reverse transcriptase (TERT) and telomerase RNA (TR) can immortalize cells through telomere maintenance, and telomerase activity is one factor that contributes to the in vitro transformation of normal cells. In vitro and in vivo evidence suggest that telomerase maintains telomeres as a functional multimer. In addition, hTERT may possess telomere maintenance-independent functions. To examine the effects of hTERT loss upon an in vitro generated tumorigenic cell line we created a tumorigenic cell line from human embryonic kidney cells through expression of the SV40 early region, H-RasG12V and a Cre-mediated excisable hTERT. These immortalized cells exhibited robust anchorage-independent colony growth and tumor formation in immuno-deficient mice. Cre recombinase expression resulted in the excision of hTERT from the tumorigenic cell lines, restoring cell mortality. A return to immortality was conferred by the re-introduction of wild-type hTERT, but not with hTERT point mutations in the N-terminus (hTEN) and reverse transcriptase (RT) domains that impair in vitro telomere elongation activity. The onset of cell mortality was not immediate, and the hTERT-excised tumorigenic cells exhibited clonal variation in the anchorage-independent colony growth assay and upon tumor formation in immuno-deficient mice. We hypothesized that tumorigenic potential was not related strictly to hTERT presence, but rather telomere length and/or integrity. To investigate this possibility we maintained the tumorigenic cell lines in the continuous presence of hTERT to permit telomere elongation prior to hTERT excision; subsequently, after hTERT excision tumor formation persisted, thus demonstrating a dependence on telomere length and not hTERT presence per se. To investigate the functional multimerization of hTERT in vivo we tested if two defective hTERT polypeptides with mutations in the hTEN and RT domains could restore telomere elongation activity in vivo. Unfortunately, during the course of these experiments an unanticipated recombination event occurred that restored a catalytically active hTERT transgene. Further in vivo analysis of hTERT multimerization should be carefully designed, accounting for the selective survival advantage bestowed by wild-type hTERT. This study provides compelling evidence that hTERT does not possess telomere maintenance-independent functions.
|
259 |
GSK-3 Inhibition: A Novel Approach to Sensitization of Chemo-resistant Pancreatic Cancer CellsMamaghani, Shadi 31 August 2011 (has links)
The aggressive nature of pancreatic cancer, characterized by invasiveness, resistance to treatment, rapid progression, and its high prevalence in the population urges the need for developing more effective treatments. Many studies have attributed resistance to therapeutics of pancreatic cancer to activity of the transcription factor nuclear factor kappa B (NF-kB). NF-kB is regulated by the serine/threonine kinase glycogen synthase kinase-3 (GSK-3). GSK-3 is a key mediator of pathways such as insulin, wnt, and PI3K/Akt and has roles in proliferation, glucose metabolism, apoptosis, motility and neuroprotection. Depending on the cellular context, GSK-3 activity can promote or inhibit cell survival. GSK-3 inhibition was recently reported to have anti-cancer effects against pancreatic cancer cells. This effect was in part attributed to suppression of NF-kB. In this thesis, I showed that while blocking GSK-3 disrupts NF-kB, and has anti-survival effects on pancreatic cancer cells, it does not sensitize to the chemotherapeutic drug gemcitabine. NF-kB inhibition by curcumin also resulted in similar effects. These results questions previous reports that NF-kB activation plays a major role in chemo-resistance of pancreatic cancer. The inhibition of NF-kB by genetic disruption of GSK-3 was previously reported to sensitize mouse embryonic fibroblasts and hepatocytes to TNF-alpha cytotoxicity. I therefore tested whether GSK-3 inhibition could sensitize pancreatic cancer cells to apoptosis induced by the clinically applicable member of the TNF-alpha family, TNF-alpha related apoptosis inducing ligand (TRAIL). In contrast to the results obtained with gemcitabine, the combination of genetic or pharmacological inhibition of GSK-3 and TRAIL was found to be highly synergistic in apoptosis induction. Analysis of the apoptotic mechanisms, point towards effects of GSK-3 inhibition on caspase-8 activation, consistent with inhibition of the death receptor signalling pathway. It was found that not only caspase-8 but also mitochondrial anti-apoptotic proteins such as Bcl-XL and Mcl-1 were mediating the TRAIL sensitization. Furthermore, for the first time the in vivo effects of GSK-3 inhibition in combination with TRAIL treatment was investigated. The results indicate a significant enhancement of apoptosis in pancreatic cancer xenografts with minimal toxic effects. Together, these studies provide a rationale for developing combination treatments based on GSK3 inhibition and TRAIL death receptor activation to treat pancreatic cancer.
|
260 |
Potential Use of Umbilical Cord Blood Cells in Spinal Cord InjuryChua, Shawn Julian 30 August 2011 (has links)
Spinal cord injury (SCI) pathophysiology occurs as a primary traumatic event followed by secondary injury, resulting in the loss of neurons, oligodendrocytes and demyelination of residual axons. Unfortunately, endogenous spontaneous regeneration of oligodendrocytes is minimal. Previously, a method to generate multi-potential stem cells (MPSC) from umbilical cord blood (UCB) has been reported using lineage negative cells (Linneg) grown in fibroblast growth factor 4 (FGF4), stem cell factor (SCF) and fms-like tyrosine kinase receptor-3 ligand (Flt-3l) supplemented serum free medium. These MPSC have the ability to differentiate into bone, muscle and endothelial cells. In this thesis, the ability of MPSC to differentiate into oligodendrocytes was investigated as a potential treatment for SCI. Culturing MPSC under conditions that mimic normal timing of oligodendrocyte differentiation resulted in cells that expressed oligodendrocyte markers in vitro and were morphologically similar to them. I next investigated the ability of MPSC to improve functional recovery in a SCI compression injury model. Although the cells did not differentiate into oligodendrocytes in vivo as we initially hypothesised, a modest but significant improvement in hindlimb function was observed. A cytokine assay revealed that MPSC secrete elevated levels of anti-inflammatory, angiogenic and neurotrophic factors, possibly contributing to indirect mechanisms of repair by reducing secondary injury. Shiverer mouse neonates were next used as an alternative non-injury model to investigate the differentiation potential of MPSC. We hypothesised that transplanting MPSC into a host with an immature immune system and an actively myelinating environment would lead to engraftment and differentiation into oligodendrocytes. However no MPSC that differentiated into oligodendrocytes could be detected. Altogether, our in vitro data adds support for the reprogramming of cells, with further studies needed to test the functionality of resulting oligodendrocyte-like cells. Although MPSC failed to differentiate in both in vivo models, several potential therapeutic targets to treat SCI were found.
|
Page generated in 0.0186 seconds