• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 63
  • 34
  • 23
  • 7
  • Tagged with
  • 254
  • 168
  • 137
  • 137
  • 125
  • 123
  • 119
  • 45
  • 37
  • 31
  • 28
  • 25
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Modélisation des réseaux de régulation de l’expression des gènes par les microARN

Poirier-Morency, Guillaume 12 1900 (has links)
Les microARN sont de petits ARN non codants d'environ 22 nucléotides impliqués dans la régulation de l'expression des gènes. Ils ciblent les régions complémentaires des molécules d'ARN messagers que ces gènes codent et ajustent leurs niveaux de traduction en protéines en fonction des besoins de la cellule. En s'attachant à leurs cibles par complémentarité partielle de leurs séquences, ces deux groupes de molécules d'ARN compétitionnent activement pour former des interactions régulatrices. Par conséquent, prédire quantitativement les concentrations d'équilibres des duplexes formés est une tâche qui doit prendre un compte plusieurs facteurs dont l'affinité pour l'hybridation, la capacité à catalyser la cible, la coopérativité et l'accessibilité de l'ARN cible. Dans le modèle que nous proposons, miRBooking 2.0, chaque interaction possible entre un microARN et un site sur un ARN cible pour former un duplexe est caractérisée par une réaction enzymatique. Une réaction de ce type opère en deux phases : une formation réversible d'un complexe enzyme-substrat, le duplexe microARN-ARN, suivie d'une conversion irréversible du substrat en produit, un ARN cible dégradé, et de la restitution l'enzyme qui pourra participer à une nouvelle réaction. Nous montrons que l'état stationnaire de ce système, qui peut comporter jusqu'à 10 millions d'équations en pratique, est unique et son jacobien possède un très petit nombre de valeurs non-nulles, permettant sa résolution efficace à l'aide d'un solveur linéaire épars. Cette solution nous permet de caractériser précisément ce mécanisme de régulation et d'étudier le rôle des microARN dans un contexte cellulaire donné. Les prédictions obtenues sur un modèle de cellule HeLa corrèlent significativement avec un ensemble de données obtenu expérimentalement et permettent d'expliquer remarquablement les effets de seuil d'expression des gènes. En utilisant ces prédictions comme condition initiale et une méthode d'intégration numérique, nous simulons en temps réel la réponse du système aux changements de conditions expérimentales. Nous appliquons ce modèle pour cibler des éléments impliqués dans la transition épithélio-mésenchymateuse (EMT), un mécanisme biologique permettant aux cellules d'acquérir une mobilité essentielle pour proliférer. En identifiant des éléments transcrits différentiellement entre les conditions épithéliale et mésenchymateuse, nous concevons des microARN synthétiques spécifiques pour interférer avec cette transition. Pour ce faire, nous proposons une méthode basée sur une recherche gloutonne parallèle pour rechercher efficacement l'espace de la séquence du microARN et présentons des résultats préliminaires sur des marqueurs connus de l'EMT. / MicroRNAs are small non-coding RNAs of approximately 22 nucleotide long involved in the regulation of gene expression. They target complementary regions to the RNA transcripts molecules that these genes encode and adjust the concentration according to the needs of the cell. As microRNAs and their RNA targets binds each other with imperfect complementarity, these two groups actively compete to form regulatory interactions. Consequently, attempting to quantitatively predict their equilibrium concentrations is a task that must take several factors into account, including the affinity for hybridization, the ability to catalyze the target, cooperation, and RNA accessibility. In the model we propose, miRBooking 2.0, each possible interaction between a microRNA and a binding site on a target RNA is characterized by an enzymatic reaction. A reaction of this type operates in two phases: a reversible formation of an enzyme-substrate complex, the microRNA-RNA duplex, and an irreversible conversion of the substrate in an RNA degradation product that restores the enzyme which can subsequently participate to other reactions. We show that the stationary state of this system, which can include up to 10 million equations in practice, has a very shallow Jacobian, allowing its efficient resolution using a sparse linear solver. This solution allows us to characterize precisely the mechanism of regulation and to study the role of microRNAs in a given cellular context. Predictions obtained on a HeLa S3 cell model correlate significantly with a set of experimental data obtained experimentally and can remarkably explain the expression threshold effects of genes. Using this solution as an initial condition and an explicit method of numerical integration, we simulate in real time the response of the system to changes of experimental conditions. We apply this model to target elements involved in the Epithelio-Mesenchymal Transition (EMT), an important mechanism of tumours proliferation. By identifying differentially expressed elements between the two conditions, we design synthetic microRNAs to interfere with the transition. To do so, we propose a method based on a parallel greedy best-first search to efficiently crawl the sequence space of the microRNA and present preliminary results on known EMT markers.
252

Predicting biomolecular function from 3D dynamics : sequence-sensitive coarse-grained elastic network model coupled to machine learning

Mailhot, Olivier 08 1900 (has links)
La dynamique structurelle des biomolécules est intimement liée à leur fonction, mais très coûteuse à étudier expériementalement. Pour cette raison, de nombreuses méthodologies computationnelles ont été développées afin de simuler la dynamique structurelle biomoléculaire. Toutefois, lorsque l'on s'intéresse à la modélisation des effects de milliers de mutations, les méthodes de simulations classiques comme la dynamique moléculaire, que ce soit à l'échelle atomique ou gros-grain, sont trop coûteuses pour la majorité des applications. D'autre part, les méthodes d'analyse de modes normaux de modèles de réseaux élastiques gros-grain (ENM pour "elastic network model") sont très rapides et procurent des solutions analytiques comprenant toutes les échelles de temps. Par contre, la majorité des ENMs considèrent seulement la géométrie du squelette biomoléculaire, ce qui en fait de mauvais choix pour étudier les effets de mutations qui ne changeraient pas cette géométrie. Le "Elastic Network Contact Model" (ENCoM) est le premier ENM sensible à la séquence de la biomolécule à l'étude, ce qui rend possible son utilisation pour l'exploration efficace d'espaces conformationnels complets de variants de séquence. La présente thèse introduit le pipeline computationel ENCoM-DynaSig-ML, qui réduit les espaces conformationnels prédits par ENCoM à des Signatures Dynamiques qui sont ensuite utilisées pour entraîner des modèles d'apprentissage machine simples. ENCoM-DynaSig-ML est capable de prédire la fonction de variants de séquence avec une précision significative, est complémentaire à toutes les méthodes existantes, et peut générer de nouvelles hypothèses à propos des éléments importants de dynamique structurelle pour une fonction moléculaire donnée. Nous présentons trois exemples d'étude de relations séquence-dynamique-fonction: la maturation des microARN, le potentiel d'activation de ligands du récepteur mu-opioïde et l'efficacité enzymatique de l'enzyme VIM-2 lactamase. Cette application novatrice de l'analyse des modes normaux est rapide, demandant seulement quelques secondes de temps de calcul par variant de séquence, et est généralisable à toute biomolécule pour laquelle des données expérimentale de mutagénèse sont disponibles. / The dynamics of biomolecules are intimately tied to their functions but experimentally elusive, making their computational study attractive. When modelling the effects of thousands of mutations, time-stepping methods such as classical or enhanced sampling molecular dynamics are too costly for most applications. On the other hand, normal mode analysis of coarse-grained elastic network models (ENMs) provides fast analytical dynamics spanning all timescales. However, the vast majority of ENMs consider backbone geometry alone, making them a poor choice to study point mutations which do not affect the equilibrium structure. The Elastic Network Contact Model (ENCoM) is the first sequence-sensitive ENM, enabling its use for the efficient exploration of full conformational spaces from sequence variants. The present work introduces the ENCoM-DynaSig-ML computational pipeline, in which the ENCoM conformational spaces are reduced to Dynamical Signatures and coupled to simple machine learning algorithms. ENCoM-DynaSig-ML predicts the function of sequence variants with significant accuracy, is complementary to all existing methods, and can generate new hypotheses about which dynamical features are important for the studied biomolecule's function. Examples given are the maturation efficiency of microRNA variants, the activation potential of mu-opioid receptor ligands and the effect of point mutations on VIM-2 lactamase's enzymatic efficiency. This novel application of normal mode analysis is very fast, taking a few seconds CPU time per variant, and is generalizable to any biomolecule on which experimental mutagenesis data exist.
253

Novel bioinformatics programs for taxonomical classification and functional analysis of the whole genome sequencing data of arbuscular mycorrhizal fungi

Kang, Jee Eun 10 1900 (has links)
No description available.
254

Beyond hairballs: depicting complexity of a kinase-phosphatase network in the budding yeast

Abd-Rabbo, Diala 01 1900 (has links)
No description available.

Page generated in 0.0253 seconds