Spelling suggestions: "subject:"1-D browth"" "subject:"1-D bgrowth""
1 |
An Atomic Force Microscopy Nanoindentation Study of Size Effects in Face-Centered Cubic Metal and Bimetallic NanowiresWood, Erin Leigh 01 January 2014 (has links)
The enhancement of strength of nanoscale materials such as face-centered cubic metal nanowires is well known and arises largely from processes mediated by high energy surface atoms. This leads to strong size effects in nanoscale plasticity; ,smaller is stronger. Yet, other factors, such as crystalline defects also contribute greatly to the mechanical properties. In particular, twin boundaries, which are pervasive and energetically favorable defects in face-centered cubic metal nanowires, have been shown to greatly enhance the strength, furthermore this increase in strength has been shown to be directly influenced by the twin density. However, attempts to control the introduction of beneficial defects remains challenging. Additionally, even minor local variations in the crystalline structure or size of metal nanowires may have drastic effects on the yielding of metal nanowires, which are difficult to measure through tensile and bending tests.
In this study, atomic force microscopy based nanoindentation techniques are used to measure the local plasticity of Ni-Au bimetallic as well as Cu and Ag metallic nanowires. In the first part of the thesis the hardness of bimetallic nanowires synthesized through template-assisted electrodeposition is measured and found to show significant size-effects. It was found that the nanoindentation hardness was governed by materials properties, the observed indentation size effects were dependent on geometrical factors.
The second part of this thesis presents a methodology to control the crystal structure of Ag and Cu nanowires through direct electrodeposition techniques, which were tested directly as grown on the substrate to limit effects of pre-straining. Ag nanowires showed marked size-effects as well as two distinct modes of deformation which we attribute to the defects that arise during crystalline growth. We also show control of the surface microstructure in Cu nanowires which leads to strengths that are more than doubled compared to single crystalline Cu nanowires. Finally, we present support from classic crystal growth theory to justify that the observed plasticity in Ag and Cu nanowires is largely dependent on defects that are nucleated through changes in the growth environment.
|
Page generated in 0.0319 seconds