1 |
Role HIF-2alfa v erytropoéze / Role of HIF-2alpha in erythropoiesisVilímková, Veronika January 2018 (has links)
The primary function of erythrocytes is transport of oxygen from lungs to various tissues of the body. Red blood cell mass, due to this important role, must be controlled at precise levels. The number of erythrocytes is primarilly increased by the glycoprotein hormon erythropoietin, which expression is controlled by HIF (hypoxia inducible factor). Transcriptional factor HIF consists of the two subunits, HIFα and HIFβ. Under normoxic conditions, alfa subunit of HIF is hydroxylated by PHD protein. This hydroxylation provides a recognition motif for the VHL protein, a part of an E3 ubiquitin ligase complex that targets hydroxylated HIF for proteasomal degradation. Under hypoxic conditions, the degradation is inhibited. The alfa subunit is translocated to the nucleus, where binds the beta subunit and regulates gene expression. HIF pathway regulates a broad spectrum of cellular functions - energy metabolism, angiogenesis, apoptosis and many others. This diploma thesis is focused on HIF2α and its role in erythropoiesis. In this present study, we used CRISPR/Cas9 technology and created HEL (human erythroleukemia) cell line with knock-out of the gene for HIF2α (EPAS1). To reveal the role of HIF2α, we used specific HIF2α inhibitor in order to block its function in HEL cell line. We also tested this...
|
2 |
THE ROLES OF HEDGEHOG AND AP-2 SIGNALING IN THE REGULATION OF LENS DEVELOPMENTKerr, Christine L. 04 1900 (has links)
<p>Lens development is an intricate process governed by growth factor signaling and a hierarchy of transcription factors that regulate important processes required for normal lens development.</p> <p>Midline hedgehog (Hh) signaling has been implicated in lens defects including cyclopia and lens degeneration in rodents and fish. A lens specific model of hedgehog signaling has not been examined, and it was unknown whether the lens is able to respond to Hh signals. To investigate this question, and to determine any consequences of abnormal Hh signaling on lens development, a mouse model of constitutively active smoothened in the surface ectoderm and derivatives, (including the lens), was created. These mutants exhibited ectopic expression of FoxE3 by E12.5, and ectopic Pax6 expression by E15.5, along with deregulation of the lens cell cycle and lens degeneration.</p> <p>Similar to the Hh signaling pathway, normal expression of the transcription factor Activating Protein-2 (AP-2, <em>tcfap2</em>), in the lens, was shown to be essential for the maintenance of an epithelial cell phenotype, and the regulation of the lens cell cycle. AP-2α has been shown to be important at the placode stage of development for correct separation of the lens vesicle away from the overlying surface ectoderm. Defects resulting from the loss of AP-2α at this stage do not manifest until E12.5, at time at which AP-2β expression is lost in the lens, suggesting possible redundancy between the two AP-2 family members in early lens development.</p> <p>To investigate this possible redundancy, <em>Tcfap2a </em>and <em>Tcfap2b</em> were conditionally deleted from the lens at E9.5 (AP-2α/β DKOs). These family members were shown to play redundant roles during early lens development, with the double mutants exhibiting more severe defects than those seen in the AP-2α single knockout model A more nasally positioned lens stalk and a rotated lens were observed. Severe corneal defects and deregulation of the lens cell cycle were also evident.</p> <p>Roles for AP-2α in later lens development were unknown. To examine whether or not this transcription factor continues to play a role in lens epithelial cell maintenance subsequent to lens vesicle separation, a mouse model with <em>Tcfap2a</em> conditionally deleted from the lens during these later stages of development was created (MRL10-AP-2α). These mutants displayed a disorganized and multilayered lens epithelial cell layer with elongated epithelial cells that abnormally expressed fiber cell specific β/γ crystallins. These mutants also exhibited defects in cell adhesion between the epithelium and fiber cells, as well as between the epithelium and capsule, and exhibited fiber cell defects including vacuoles.</p> <p>Together, the work presented in this thesis outline previously unknown roles for Hh and AP-2 signaling in lens development. Both Hh and AP-2 are required for the maintenance of a normal lens epithelial cell phenotype and regulation of the cell cycle. This thesis also illustrates the requirement (and redundant roles) for AP-2α and AP-2β at the lens placode stage of development.</p> / Doctor of Philosophy (Medical Science)
|
3 |
Effect of the oestrous cycle, pregnancy and uterine region on the responsiveness of the isolated mouse uterus to prostaglandin F(2alpha) and the thromboxane mimetic U46619.Griffiths, A.L., Marshall, Kay M., Senior, J., Fleming, C., Woodward, D.F. 03 November 2009 (has links)
No / Previous studies in this laboratory have suggested that the isolated uterus from non-pregnant mice has a prostaglandin F and a thromboxane receptor population similar to that found in human myometrium. The aim of this study was to investigate any regional variation in myogenic activity ) and the and responsiveness to prostaglandin F(2alpha) (PGF(2alpha) thromboxane mimetic U46619 in the mouse uterus taken during different stages of the oestrous cycle and during pregnancy. Uterine samples from BKW mice were taken from different anatomical segments along the length of each uterine horn and set up for superfusion at 2 ml/min with Krebs solution (containing 1 microM indometacin) at 37 degrees C, and gassed with 95%O(2)/5%CO(2). Responses (area under the curve) are expressed as a percentage of the final contraction induced by hypotonic shock. Data are expressed as the means +/- s.e.m. of n=5-12 and were analysed using Student's paired t-test or two-way ANOVA with a Bonferroni post hoc test. Regional variation in myogenic activity was observed in all tissues studied except those taken during labour. These tissues displayed significantly greater myogenic activity than tissues taken at late gestation and at all stages of the oestrous cycle. Tissues from pregnant animals were generally more responsive to U46619 and PGF(2alpha) than tissues taken from non-pregnant animals. Tissues taken from the upper segment of the uterine horn were more responsive to both agonists during the oestrous cycle. The findings demonstrated that the hormonal milieu and site of excision are important for myogenic activity and responsiveness.
|
4 |
Functional Characterization Of Transcription Factor Activator Protein 2 Alpha (AP-2α)Wajapeyee, Narendra 08 1900 (has links) (PDF)
No description available.
|
5 |
Sélectivité fonctionnelle de ligands orthostériques du récepteur FP de la PGF[indice inférieur 2alpha]Tran-Drouin, Simon January 2010 (has links)
Les ligands orthostériques transmettent un signal complexe aux cellules en se fixant à l'intérieur de la pochette de liaison de leur récepteur cible. Le changement conformationel qui en résulte modifie l'efficacité du récepteur à recruter et activer les seconds messagers en amont des voies de signalisation, soit les protéines G hétérotrimériques dans le cas des récepteurs couplés aux protéines G (GPCRs). Ces variations entraînent une vaste gamme de modifications dans le milieu intracellulaire. Par exemple, l'activation de la protéine G q provoque entre autres l'activation de la phospholipase C? (PLC? ), la production d'inositol 1,4,5-trisphosphate (1P3), puis l'activation des protéines kinases C (PKC). L'activation de la protéine G s , pour sa part, stimule l'activité de l'adénylate cyclase (AC), ce qui entraîne la production d'AMPc et l'activation de la protéine kinase A (PKA). Un ligand n'influence pas nécessairement deux voies de signalisation indépendantes de façon similaire, ce qui lui confère la propriété de sélectivité fonctionnelle. Dans ce travail, nous avons caractérisé le profil pharmacologique de ligands orthostériques du récepteur FP de la PGF2? à l'aide d'un clone HEK-293-SL exprimant le récepteur FP de façon stable. La mesure de la production d'IP3 a permis d'évaluer la voie de la PLC alors que la mesure de la production d'AMP c a permis d'évaluer la voie de l'AC. Pour chacune d'entre elles, le fluprostenol s'est comporté comme un agoniste complet moins puissant que l'agoniste naturel. Le composé synthétique Al-8810 s'est comporté comme un agoniste partiel de la voie de la PLC, alors qu'il s'est avéré être un antagoniste de la voie de l'AC. Ces résultats démontrent que l'activité d'un ligand vis-à-vis un récepteur dépend du groupe d'effecteurs observé, ce qui illustre le concept de sélectivité fonctionnelle des ligands. L'étude des composés allostériques THG113 et THG113.824 démontre que ces derniers n'influencent pas la signalisation déclenchée en aval du récepteur FP par son agoniste naturel. Ces résultats suggèrent qu'ils agiraient comme antagoniste des effets de la PGF 2? par un mécanisme indépendant du récepteur FP. [Symboles non conformes]
|
6 |
The Neural Substrate of Sex Pheromone Signalling in Male Goldfish (Carassius auratus)Lado, Wudu E. 26 October 2012 (has links)
The transmission of sex pheromone-mediated signals is essential for goldfish reproduction. However, the neural pathways underlying this reproductive signalling pathway in the goldfish brain is not well described. Lesioning experiments have shown previously that two brain areas, the preoptic area (POA) and the ventral telencephali pars ventralis (Vv) in particular, are important for reproduction. We used patch clamp electrophysiology to study the electrical activities of POA and Vv neurons. Based on the intrinsic properties of these neurons, we suggest there are five different functional classes of POA neurons and a single class of Vv neurons. In addition, by electrically stimulating the olfactory bulb (OB), we were able to show that this primary sensory structure makes monosynaptic glutamatergic connections with both POA and Vv neurons. While electrophysiology measures signalling events occurring at short time scales on the order of milliseconds to minutes, we were also interested in studying sex pheromone signalling in the goldfish brain over a long time scale. Thus, we describe changes in gene expression in male goldfish exposed to waterborne sex pheromones (17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha) over 6 hours. We perform cDNA microarrays on Prostaglandin-F2alpha-treated fish to study the rapid modulation of transcription and define the signalling pathways affected. Our microarrays showed that 71 genes were differentially regulated (67 up and 4 down). Through gene ontology enrichment analysis, we found that these genes were involved in various biological processes such as RNA processing, neurotransmission, neuronal development, apoptosis, cellular metabolism and sexual reproduction. RT-PCRs were performed to validate our microarrays and to facilitate direct comparisons of the effects of the two sex pheromones, 17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha. By combining electrophysiology and gene expression analyses, we were able to study sex-pheromone signalling on two different time scales. One short, occurring on the order of milliseconds to minutes, that involves electrical activities in the brain through the glutamatergic amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate receptors; and the other long occurring several hours later that involves changes in the gene expression levels of calmodulin and ependymin among other genes underlying neuroplasticity. Reproductive neuroplasticity in the goldfish may therefore require the activation of glutamatergic receptors which then activate downstream signals like calmodulin and ependymin to transform the sex pheromones-mediate signal into gene expression.
|
7 |
The Neural Substrate of Sex Pheromone Signalling in Male Goldfish (Carassius auratus)Lado, Wudu E. 26 October 2012 (has links)
The transmission of sex pheromone-mediated signals is essential for goldfish reproduction. However, the neural pathways underlying this reproductive signalling pathway in the goldfish brain is not well described. Lesioning experiments have shown previously that two brain areas, the preoptic area (POA) and the ventral telencephali pars ventralis (Vv) in particular, are important for reproduction. We used patch clamp electrophysiology to study the electrical activities of POA and Vv neurons. Based on the intrinsic properties of these neurons, we suggest there are five different functional classes of POA neurons and a single class of Vv neurons. In addition, by electrically stimulating the olfactory bulb (OB), we were able to show that this primary sensory structure makes monosynaptic glutamatergic connections with both POA and Vv neurons. While electrophysiology measures signalling events occurring at short time scales on the order of milliseconds to minutes, we were also interested in studying sex pheromone signalling in the goldfish brain over a long time scale. Thus, we describe changes in gene expression in male goldfish exposed to waterborne sex pheromones (17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha) over 6 hours. We perform cDNA microarrays on Prostaglandin-F2alpha-treated fish to study the rapid modulation of transcription and define the signalling pathways affected. Our microarrays showed that 71 genes were differentially regulated (67 up and 4 down). Through gene ontology enrichment analysis, we found that these genes were involved in various biological processes such as RNA processing, neurotransmission, neuronal development, apoptosis, cellular metabolism and sexual reproduction. RT-PCRs were performed to validate our microarrays and to facilitate direct comparisons of the effects of the two sex pheromones, 17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha. By combining electrophysiology and gene expression analyses, we were able to study sex-pheromone signalling on two different time scales. One short, occurring on the order of milliseconds to minutes, that involves electrical activities in the brain through the glutamatergic amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate receptors; and the other long occurring several hours later that involves changes in the gene expression levels of calmodulin and ependymin among other genes underlying neuroplasticity. Reproductive neuroplasticity in the goldfish may therefore require the activation of glutamatergic receptors which then activate downstream signals like calmodulin and ependymin to transform the sex pheromones-mediate signal into gene expression.
|
8 |
The Neural Substrate of Sex Pheromone Signalling in Male Goldfish (Carassius auratus)Lado, Wudu E. January 2012 (has links)
The transmission of sex pheromone-mediated signals is essential for goldfish reproduction. However, the neural pathways underlying this reproductive signalling pathway in the goldfish brain is not well described. Lesioning experiments have shown previously that two brain areas, the preoptic area (POA) and the ventral telencephali pars ventralis (Vv) in particular, are important for reproduction. We used patch clamp electrophysiology to study the electrical activities of POA and Vv neurons. Based on the intrinsic properties of these neurons, we suggest there are five different functional classes of POA neurons and a single class of Vv neurons. In addition, by electrically stimulating the olfactory bulb (OB), we were able to show that this primary sensory structure makes monosynaptic glutamatergic connections with both POA and Vv neurons. While electrophysiology measures signalling events occurring at short time scales on the order of milliseconds to minutes, we were also interested in studying sex pheromone signalling in the goldfish brain over a long time scale. Thus, we describe changes in gene expression in male goldfish exposed to waterborne sex pheromones (17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha) over 6 hours. We perform cDNA microarrays on Prostaglandin-F2alpha-treated fish to study the rapid modulation of transcription and define the signalling pathways affected. Our microarrays showed that 71 genes were differentially regulated (67 up and 4 down). Through gene ontology enrichment analysis, we found that these genes were involved in various biological processes such as RNA processing, neurotransmission, neuronal development, apoptosis, cellular metabolism and sexual reproduction. RT-PCRs were performed to validate our microarrays and to facilitate direct comparisons of the effects of the two sex pheromones, 17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha. By combining electrophysiology and gene expression analyses, we were able to study sex-pheromone signalling on two different time scales. One short, occurring on the order of milliseconds to minutes, that involves electrical activities in the brain through the glutamatergic amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate receptors; and the other long occurring several hours later that involves changes in the gene expression levels of calmodulin and ependymin among other genes underlying neuroplasticity. Reproductive neuroplasticity in the goldfish may therefore require the activation of glutamatergic receptors which then activate downstream signals like calmodulin and ependymin to transform the sex pheromones-mediate signal into gene expression.
|
Page generated in 0.0441 seconds