1 |
Carbohydrate supplementation and high intensity exercise: Glutamine metabolism and immune function in well-trained athletesBlanchard, M. Unknown Date (has links)
No description available.
|
2 |
The influence of bovine colostrum supplementation on immune variables and exercise performance in trained cyclistsShing, Cecilia Mary Unknown Date (has links)
Bovine colostrum is homologous in composition to human colostrum but contains greater concentrations of key bioactive components that contribute directly to growth and immunity. It has been used by humans to treat and prevent enteric pathogens and to promote wound healing and intestinal repair. Moreover, bovine colostrum has been promoted and used by athletes as a supplement to enhance immune function and improve exercise performance. This is despite limited data in support of its value to athletes and the relative absence of strong data that identify mechanisms that could improve exercise performance and immune function. The aim of the three studies that comprise this thesis was therefore to investigate the influence of a bovine colostrum protein concentrate (CPC) on immune variables, hormone concentrations, autonomic activity and exercise performance in highly-trained endurance cyclists. Study one involved monitoring exercise performance and immune variables during an eight week bovine CPC supplementation period, which included five consecutive days of high-intensity training (HIT). Twenty-nine highly-trained male road cyclists completed an initial 40-km time trial (TT40) and were then randomly assigned to either a supplement (n=14, 10 g bovine CPC per day) or placebo group (n=15, 10 g whey protein concentrate per day). Following five weeks of supplementation, the cyclists completed a second TT40 before undertaking five consecutive days of high-intensity training (HIT) that included another TT40. A final TT40 was completed one week following the HIT. Venous blood and saliva samples were collected immediately before and after each TT40, and upper respiratory illness symptoms were recorded over the experimental period. Supplementation with bovine CPC elicited improvements in TT40 performance at the end of the HIT period, when compared to the placebo group, (1.9±2.2%; mean±90% confidence limits) and maintained ventilatory threshold following the HIT (4.6±4.6%). When compared to the placebo group, bovine CPC supplementation significantly increased pre-exercise serum soluble tumour necrosis factor receptor 1 during the HIT period (p<0.039). Supplementation also suppressed the post-exercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC=-Bovine colostrum is homologous in composition to human colostrum but contains greater concentrations of key bioactive components that contribute directly to growth and immunity. It has been used by humans to treat and prevent enteric pathogens and to promote wound healing and intestinal repair. Moreover, bovine colostrum has been promoted and used by athletes as a supplement to enhance immune function and improve exercise performance. This is despite limited data in support of its value to athletes and the relative absence of strong data that identify mechanisms that could improve exercise performance and immune function. The aim of the three studies that comprise this thesis was therefore to investigate the influence of a bovine colostrum protein concentrate (CPC) on immune variables, hormone concentrations, autonomic activity and exercise performance in highly-trained endurance cyclists. Study one involved monitoring exercise performance and immune variables during an eight week bovine CPC supplementation period, which included five consecutive days of high-intensity training (HIT). Twenty-nine highly-trained male road cyclists completed an initial 40-km time trial (TT40) and were then randomly assigned to either a supplement (n=14, 10 g bovine CPC per day) or placebo group (n=15, 10 g whey protein concentrate per day). Following five weeks of supplementation, the cyclists completed a second TT40 before undertaking five consecutive days of high-intensity training (HIT) that included another TT40. A final TT40 was completed one week following the HIT. Venous blood and saliva samples were collected immediately before and after each TT40, and upper respiratory illness symptoms were recorded over the experimental period. Supplementation with bovine CPC elicited improvements in TT40 performance at the end of the HIT period, when compared to the placebo group, (1.9±2.2%; mean±90% confidence limits) and maintained ventilatory threshold following the HIT (4.6±4.6%). When compared to the placebo group, bovine CPC supplementation significantly increased pre-exercise serum soluble tumour necrosis factor receptor 1 during the HIT period (p<0.039). Supplementation also suppressed the post-exercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC=- 1.0±2.7%, placebo=-9.2±2.8%; mean±SE, p=0.017) and during the following week (bovine CPC=1.4±2.9%, placebo=-8.2±2.8%, p=0.004). In addition, bovine CPC supplementation prevented a post-exercise decrease in serum IgG2 concentration at the end of the HIT period (bovine CPC=4.8±6.8%, p=0.88; placebo=-9.7±6.9%, p=0.013) and there was a trend towards reduced incidence of upper respiratory illness symptoms in the bovine CPC group (p=0.055). Study one demonstrated that low dose bovine CPC supplementation elicited improvements in TT40 performance during a HIT period and maintained ventilatory threshold following five consecutive days of HIT. Supplementation was also found to modulate immune variables during normal training and following an acute period of intense exercise, which may have contributed to the trend toward reduced upper respiratory illness in the bovine CPC group. The maintenance of performance, prevention of post-exercise suppression of IgG2 and cytotoxic/suppressor T cells and increase in anti-inflammatory serum soluble tumour necrosis factor receptor 1 suggest that bovine CPC supplementation is beneficial to cyclists during a period of high-intensity training. The aim of Study two was to investigate the hormonal, immune and autonomic responses of competitive cyclists over a five-day stage race following eight weeks of bovine CPC supplementation. Ten highly-trained male road cyclists were randomly assigned to a placebo (n=6, 10 g whey protein concentrate/day) or bovine CPC group (n=4, 10 g bovine CPC/day). Cyclists provided a baseline saliva sample before commencing supplementation that culminated in a five day competitive cycle race. The cyclists provided daily saliva samples and heart rate variability (HRV) was measured on each day of the race. A Profile of Mood States questionnaire was completed on days one, three and five of the race and cyclists recorded upper respiratory illness symptoms throughout the experimental period. While there was no influence of bovine CPC on salivary IgA, supplementation maintained testosterone concentrations over the competition period (p<0.05) and prevented a decrease in parasympathetic activity (p<0.05). There was also a trend towards improved mood state (p=0.06) in the bovine CPC group. These data indicate that bovine CPC supplementation may prevent disturbances in autonomic function and the hypothalamic-pituitary-gonadal axis associated with consecutive days of cycle racing The aim of study three was to assess whether bovine CPC would directly stimulate cytokine production of peripheral blood mononuclear cells (PBMC), with and without lipopolysaccharide (LPS) and phytohemagglutinin (PHA) stimulation. Lipopolysaccharide (LPS) was added to cell cultures as a potent enhancer of monocyte and macrophage cytokine release and a model of exercise stress. Phytohemagglutinin was added to PBMC to stimulate T cell proliferation. Blood was sampled from four healthy, male endurance cyclists who had abstained from exercise for 48 hours. PBMC were separated and cultured with bovine CPC concentrations of 0 (control), 1.25, 2.5 and 5% with and without LPS (3µg·mL-1) and PHA (2.5µg·mL-1). Cell supernatants were collected at 6 and 24 hours of culture for the determination of tumour necrosis factor (TNF), interferon (IFN)-y, interleukin (IL)-10, IL-6, IL-4 and IL-2 concentrations. Following six hours of PBMC incubation at 37°C with 5% CO2, IFN-y, IL-10 and IL-2 secretion were increased with increasing concentrations of bovine CPC (p<0.05). In a dose dependent manner, IFN-y and IL-2 remained elevated following 24 hours of incubation (p<0.05). Data from this final study showed that bovine CPC modulates in vitro cytokine production of human PBMC. In conclusion, the present data suggest that bovine CPC supplementation is beneficial to highlytrained cyclists during periods of high-intensity training and competition. Bovine CPC promotes the release of cell mediated cytokines from PBMC and has the potential therefore to influence a number of physiological systems. Supplementation was associated with enhanced recovery over consecutive days of high-intensity training and competition, as evidenced by maintained exercise performance, ventilatory threshold and testosterone concentrations. Bovine CPC modulated immune function, particularly at the end of a HIT period, and there was a trend for reduced incidence of upper respiratory symptoms following bovine CPC supplementation in Study one. The data collectively suggest that bovine CPC supplementation may influence a combination of physiological pathways including the autonomic nervous system and the hypothalamic-pituitary axis.
|
3 |
Natural killer cell responses to exercise: Changes in cellular activation and/or distributionGedge, V. Unknown Date (has links)
No description available.
|
4 |
The physical and game requirements of rugby unionDuthie, G. M. Unknown Date (has links)
No description available.
|
5 |
Promoting physical activity among community-dwelling people with acquired brain injuryTweedy, S. M. Unknown Date (has links)
No description available.
|
6 |
Promoting physical activity among community-dwelling people with acquired brain injuryTweedy, S. M. Unknown Date (has links)
No description available.
|
7 |
Towards the development of a talent identification and development program for coachesO'Keeffe, Erin Elizabeth Unknown Date (has links)
Coach retention is a significant problem for sport at all levels. Coach turnover, especially of talented and experienced coaches, creates a multitude of operational complexities for many sport organisations. The importance of having quality coaches available to assist the development of high performing athletes has been identified by both sports administrators and elite athletes. However, the data indicate that in Australia, coach accreditation rates are decreasing by more than 9% each year (ASC, 2004). Although programs focusing on coach education and pathways have been developed, minimal research has addressed the elements involved in identifying and retaining talented coaches. The first step in developing a coach talent identification and development program is the formulation of a definition of coaching talent. Although definitions of 'talent' exist in the business and sport performance arenas, these are not directly applicable to the sport coaching context. This study used a multi-method approach through the combination of interviews and questionnaires to develop a comprehensive definition of a talented coach. Two research questions were addressed: What are the attributes of a talented coach (and do perceptions of these differ between different stakeholders)? What are the factors that identify a talented coach (and do perceptions of these differ between different stakeholders)? Information gathered from interviews with experienced personnel in sport (seven coaches and administrators and two senior athletes) was transcribed and coded using open, axial and reflective coding. Themes identified in the analysis were incorporated with the literature to inform construction of the Talent in Coaching Questionnaire. The questionnaire consisted of 100 items investigating three separate but related areas: Demographic Intbrmation (10 items); Attributes of a Talented Coach (77 items); and Identification of a Talented Coach (13 items). Within the Attributes of a Talented Coach section, items were allocated six different categories: Background (10 items); Knowledge (1 3 items); Athlete-Coach Interaction (1 1 items); Operational Practices (12 items); Motivation (7 items); and Attributes (24 items). TWO areas were addressed in the Talent Identification section: the populations in which a talented coach could be found (6 items) and the best possible selection methods to identify a talented coach (7 items). Items were answered using a 5-point Likert scale where 1 = strongly disagree and 5 = strongly agree. The Talent in Coaching Questionnaire was piloted with nine experienced sport personnel and 21 high performing athletics coaches to obtain feedback on face validity, ease of understanding and readability prior to delivery to 300 coaches and administrators across Queensland. The sample incorporated beginner, experienced, retired and lapsed coaches fiom individual and team sports at club, state and national levels. Administrators were defined as involved in the coordination of coaching and support services at club, state or national level. Subjects were sourced fiom 38 different sports through their respective State Sporting Organisations. Within the time fiame allowed, 162 questionnaires were received (54% response rate), which included responses fiom 32 different sports. The sample comprised 27.7% female and 72.3% male subjects, 66.7% of whom were over the age of 40. Using SPSS, the data were analyzed through descriptive statistics, reliability and factor analysis, ANOVA, and Chi square. Items and categories were ranked according to the mean score fiom all participants. The top five attributes of a talented coach were considered to be an individual who; is aware of the individual differences among athletes (mean = 4.74), has an enjoyment of coaching (mean = 4.71), is always looking for improvement in his / her coaching (mean = 4-70), is willing to learn (mean = 4-69), and has knowledge of the fundamental skills required for the sport (mean = 4.65). Attributes considered less important in a talented coach were; one who is motivated by money (mean = 1-70), introverted (mean = 2.38), makes the athlete the first priority in life (mean = 2.42), has received awards for coaching (mean = 2.92) and coached as a head coach (mean = 2.40), State coach (mean = 2.96), or National coach (mean = 2.83). Results suggest that a talented coach may be found among those individuals already coaching or retiring athletes and may be effectively identified through observation at training and competition, possibly through the use of a talent scout. Significant differences were found when item scores were compared by age, gender, experience, and qualifications (National Coaching Accreditation Scheme). Female coaches considered nurturing and teaching attributes more important than did males, additionally career stage may affect consideration of the most important attributes. Practical implications and directions for future research are also discussed.
|
8 |
The influence of bovine colostrum supplementation on immune variables and exercise performance in trained cyclistsShing, Cecilia Mary Unknown Date (has links)
Bovine colostrum is homologous in composition to human colostrum but contains greater concentrations of key bioactive components that contribute directly to growth and immunity. It has been used by humans to treat and prevent enteric pathogens and to promote wound healing and intestinal repair. Moreover, bovine colostrum has been promoted and used by athletes as a supplement to enhance immune function and improve exercise performance. This is despite limited data in support of its value to athletes and the relative absence of strong data that identify mechanisms that could improve exercise performance and immune function. The aim of the three studies that comprise this thesis was therefore to investigate the influence of a bovine colostrum protein concentrate (CPC) on immune variables, hormone concentrations, autonomic activity and exercise performance in highly-trained endurance cyclists. Study one involved monitoring exercise performance and immune variables during an eight week bovine CPC supplementation period, which included five consecutive days of high-intensity training (HIT). Twenty-nine highly-trained male road cyclists completed an initial 40-km time trial (TT40) and were then randomly assigned to either a supplement (n=14, 10 g bovine CPC per day) or placebo group (n=15, 10 g whey protein concentrate per day). Following five weeks of supplementation, the cyclists completed a second TT40 before undertaking five consecutive days of high-intensity training (HIT) that included another TT40. A final TT40 was completed one week following the HIT. Venous blood and saliva samples were collected immediately before and after each TT40, and upper respiratory illness symptoms were recorded over the experimental period. Supplementation with bovine CPC elicited improvements in TT40 performance at the end of the HIT period, when compared to the placebo group, (1.9±2.2%; mean±90% confidence limits) and maintained ventilatory threshold following the HIT (4.6±4.6%). When compared to the placebo group, bovine CPC supplementation significantly increased pre-exercise serum soluble tumour necrosis factor receptor 1 during the HIT period (p<0.039). Supplementation also suppressed the post-exercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC=-Bovine colostrum is homologous in composition to human colostrum but contains greater concentrations of key bioactive components that contribute directly to growth and immunity. It has been used by humans to treat and prevent enteric pathogens and to promote wound healing and intestinal repair. Moreover, bovine colostrum has been promoted and used by athletes as a supplement to enhance immune function and improve exercise performance. This is despite limited data in support of its value to athletes and the relative absence of strong data that identify mechanisms that could improve exercise performance and immune function. The aim of the three studies that comprise this thesis was therefore to investigate the influence of a bovine colostrum protein concentrate (CPC) on immune variables, hormone concentrations, autonomic activity and exercise performance in highly-trained endurance cyclists. Study one involved monitoring exercise performance and immune variables during an eight week bovine CPC supplementation period, which included five consecutive days of high-intensity training (HIT). Twenty-nine highly-trained male road cyclists completed an initial 40-km time trial (TT40) and were then randomly assigned to either a supplement (n=14, 10 g bovine CPC per day) or placebo group (n=15, 10 g whey protein concentrate per day). Following five weeks of supplementation, the cyclists completed a second TT40 before undertaking five consecutive days of high-intensity training (HIT) that included another TT40. A final TT40 was completed one week following the HIT. Venous blood and saliva samples were collected immediately before and after each TT40, and upper respiratory illness symptoms were recorded over the experimental period. Supplementation with bovine CPC elicited improvements in TT40 performance at the end of the HIT period, when compared to the placebo group, (1.9±2.2%; mean±90% confidence limits) and maintained ventilatory threshold following the HIT (4.6±4.6%). When compared to the placebo group, bovine CPC supplementation significantly increased pre-exercise serum soluble tumour necrosis factor receptor 1 during the HIT period (p<0.039). Supplementation also suppressed the post-exercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC=- 1.0±2.7%, placebo=-9.2±2.8%; mean±SE, p=0.017) and during the following week (bovine CPC=1.4±2.9%, placebo=-8.2±2.8%, p=0.004). In addition, bovine CPC supplementation prevented a post-exercise decrease in serum IgG2 concentration at the end of the HIT period (bovine CPC=4.8±6.8%, p=0.88; placebo=-9.7±6.9%, p=0.013) and there was a trend towards reduced incidence of upper respiratory illness symptoms in the bovine CPC group (p=0.055). Study one demonstrated that low dose bovine CPC supplementation elicited improvements in TT40 performance during a HIT period and maintained ventilatory threshold following five consecutive days of HIT. Supplementation was also found to modulate immune variables during normal training and following an acute period of intense exercise, which may have contributed to the trend toward reduced upper respiratory illness in the bovine CPC group. The maintenance of performance, prevention of post-exercise suppression of IgG2 and cytotoxic/suppressor T cells and increase in anti-inflammatory serum soluble tumour necrosis factor receptor 1 suggest that bovine CPC supplementation is beneficial to cyclists during a period of high-intensity training. The aim of Study two was to investigate the hormonal, immune and autonomic responses of competitive cyclists over a five-day stage race following eight weeks of bovine CPC supplementation. Ten highly-trained male road cyclists were randomly assigned to a placebo (n=6, 10 g whey protein concentrate/day) or bovine CPC group (n=4, 10 g bovine CPC/day). Cyclists provided a baseline saliva sample before commencing supplementation that culminated in a five day competitive cycle race. The cyclists provided daily saliva samples and heart rate variability (HRV) was measured on each day of the race. A Profile of Mood States questionnaire was completed on days one, three and five of the race and cyclists recorded upper respiratory illness symptoms throughout the experimental period. While there was no influence of bovine CPC on salivary IgA, supplementation maintained testosterone concentrations over the competition period (p<0.05) and prevented a decrease in parasympathetic activity (p<0.05). There was also a trend towards improved mood state (p=0.06) in the bovine CPC group. These data indicate that bovine CPC supplementation may prevent disturbances in autonomic function and the hypothalamic-pituitary-gonadal axis associated with consecutive days of cycle racing The aim of study three was to assess whether bovine CPC would directly stimulate cytokine production of peripheral blood mononuclear cells (PBMC), with and without lipopolysaccharide (LPS) and phytohemagglutinin (PHA) stimulation. Lipopolysaccharide (LPS) was added to cell cultures as a potent enhancer of monocyte and macrophage cytokine release and a model of exercise stress. Phytohemagglutinin was added to PBMC to stimulate T cell proliferation. Blood was sampled from four healthy, male endurance cyclists who had abstained from exercise for 48 hours. PBMC were separated and cultured with bovine CPC concentrations of 0 (control), 1.25, 2.5 and 5% with and without LPS (3µg·mL-1) and PHA (2.5µg·mL-1). Cell supernatants were collected at 6 and 24 hours of culture for the determination of tumour necrosis factor (TNF), interferon (IFN)-y, interleukin (IL)-10, IL-6, IL-4 and IL-2 concentrations. Following six hours of PBMC incubation at 37°C with 5% CO2, IFN-y, IL-10 and IL-2 secretion were increased with increasing concentrations of bovine CPC (p<0.05). In a dose dependent manner, IFN-y and IL-2 remained elevated following 24 hours of incubation (p<0.05). Data from this final study showed that bovine CPC modulates in vitro cytokine production of human PBMC. In conclusion, the present data suggest that bovine CPC supplementation is beneficial to highlytrained cyclists during periods of high-intensity training and competition. Bovine CPC promotes the release of cell mediated cytokines from PBMC and has the potential therefore to influence a number of physiological systems. Supplementation was associated with enhanced recovery over consecutive days of high-intensity training and competition, as evidenced by maintained exercise performance, ventilatory threshold and testosterone concentrations. Bovine CPC modulated immune function, particularly at the end of a HIT period, and there was a trend for reduced incidence of upper respiratory symptoms following bovine CPC supplementation in Study one. The data collectively suggest that bovine CPC supplementation may influence a combination of physiological pathways including the autonomic nervous system and the hypothalamic-pituitary axis.
|
9 |
The influence of bovine colostrum supplementation on immune variables and exercise performance in trained cyclistsShing, Cecilia Mary Unknown Date (has links)
Bovine colostrum is homologous in composition to human colostrum but contains greater concentrations of key bioactive components that contribute directly to growth and immunity. It has been used by humans to treat and prevent enteric pathogens and to promote wound healing and intestinal repair. Moreover, bovine colostrum has been promoted and used by athletes as a supplement to enhance immune function and improve exercise performance. This is despite limited data in support of its value to athletes and the relative absence of strong data that identify mechanisms that could improve exercise performance and immune function. The aim of the three studies that comprise this thesis was therefore to investigate the influence of a bovine colostrum protein concentrate (CPC) on immune variables, hormone concentrations, autonomic activity and exercise performance in highly-trained endurance cyclists. Study one involved monitoring exercise performance and immune variables during an eight week bovine CPC supplementation period, which included five consecutive days of high-intensity training (HIT). Twenty-nine highly-trained male road cyclists completed an initial 40-km time trial (TT40) and were then randomly assigned to either a supplement (n=14, 10 g bovine CPC per day) or placebo group (n=15, 10 g whey protein concentrate per day). Following five weeks of supplementation, the cyclists completed a second TT40 before undertaking five consecutive days of high-intensity training (HIT) that included another TT40. A final TT40 was completed one week following the HIT. Venous blood and saliva samples were collected immediately before and after each TT40, and upper respiratory illness symptoms were recorded over the experimental period. Supplementation with bovine CPC elicited improvements in TT40 performance at the end of the HIT period, when compared to the placebo group, (1.9±2.2%; mean±90% confidence limits) and maintained ventilatory threshold following the HIT (4.6±4.6%). When compared to the placebo group, bovine CPC supplementation significantly increased pre-exercise serum soluble tumour necrosis factor receptor 1 during the HIT period (p<0.039). Supplementation also suppressed the post-exercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC=-Bovine colostrum is homologous in composition to human colostrum but contains greater concentrations of key bioactive components that contribute directly to growth and immunity. It has been used by humans to treat and prevent enteric pathogens and to promote wound healing and intestinal repair. Moreover, bovine colostrum has been promoted and used by athletes as a supplement to enhance immune function and improve exercise performance. This is despite limited data in support of its value to athletes and the relative absence of strong data that identify mechanisms that could improve exercise performance and immune function. The aim of the three studies that comprise this thesis was therefore to investigate the influence of a bovine colostrum protein concentrate (CPC) on immune variables, hormone concentrations, autonomic activity and exercise performance in highly-trained endurance cyclists. Study one involved monitoring exercise performance and immune variables during an eight week bovine CPC supplementation period, which included five consecutive days of high-intensity training (HIT). Twenty-nine highly-trained male road cyclists completed an initial 40-km time trial (TT40) and were then randomly assigned to either a supplement (n=14, 10 g bovine CPC per day) or placebo group (n=15, 10 g whey protein concentrate per day). Following five weeks of supplementation, the cyclists completed a second TT40 before undertaking five consecutive days of high-intensity training (HIT) that included another TT40. A final TT40 was completed one week following the HIT. Venous blood and saliva samples were collected immediately before and after each TT40, and upper respiratory illness symptoms were recorded over the experimental period. Supplementation with bovine CPC elicited improvements in TT40 performance at the end of the HIT period, when compared to the placebo group, (1.9±2.2%; mean±90% confidence limits) and maintained ventilatory threshold following the HIT (4.6±4.6%). When compared to the placebo group, bovine CPC supplementation significantly increased pre-exercise serum soluble tumour necrosis factor receptor 1 during the HIT period (p<0.039). Supplementation also suppressed the post-exercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC=- 1.0±2.7%, placebo=-9.2±2.8%; mean±SE, p=0.017) and during the following week (bovine CPC=1.4±2.9%, placebo=-8.2±2.8%, p=0.004). In addition, bovine CPC supplementation prevented a post-exercise decrease in serum IgG2 concentration at the end of the HIT period (bovine CPC=4.8±6.8%, p=0.88; placebo=-9.7±6.9%, p=0.013) and there was a trend towards reduced incidence of upper respiratory illness symptoms in the bovine CPC group (p=0.055). Study one demonstrated that low dose bovine CPC supplementation elicited improvements in TT40 performance during a HIT period and maintained ventilatory threshold following five consecutive days of HIT. Supplementation was also found to modulate immune variables during normal training and following an acute period of intense exercise, which may have contributed to the trend toward reduced upper respiratory illness in the bovine CPC group. The maintenance of performance, prevention of post-exercise suppression of IgG2 and cytotoxic/suppressor T cells and increase in anti-inflammatory serum soluble tumour necrosis factor receptor 1 suggest that bovine CPC supplementation is beneficial to cyclists during a period of high-intensity training. The aim of Study two was to investigate the hormonal, immune and autonomic responses of competitive cyclists over a five-day stage race following eight weeks of bovine CPC supplementation. Ten highly-trained male road cyclists were randomly assigned to a placebo (n=6, 10 g whey protein concentrate/day) or bovine CPC group (n=4, 10 g bovine CPC/day). Cyclists provided a baseline saliva sample before commencing supplementation that culminated in a five day competitive cycle race. The cyclists provided daily saliva samples and heart rate variability (HRV) was measured on each day of the race. A Profile of Mood States questionnaire was completed on days one, three and five of the race and cyclists recorded upper respiratory illness symptoms throughout the experimental period. While there was no influence of bovine CPC on salivary IgA, supplementation maintained testosterone concentrations over the competition period (p<0.05) and prevented a decrease in parasympathetic activity (p<0.05). There was also a trend towards improved mood state (p=0.06) in the bovine CPC group. These data indicate that bovine CPC supplementation may prevent disturbances in autonomic function and the hypothalamic-pituitary-gonadal axis associated with consecutive days of cycle racing The aim of study three was to assess whether bovine CPC would directly stimulate cytokine production of peripheral blood mononuclear cells (PBMC), with and without lipopolysaccharide (LPS) and phytohemagglutinin (PHA) stimulation. Lipopolysaccharide (LPS) was added to cell cultures as a potent enhancer of monocyte and macrophage cytokine release and a model of exercise stress. Phytohemagglutinin was added to PBMC to stimulate T cell proliferation. Blood was sampled from four healthy, male endurance cyclists who had abstained from exercise for 48 hours. PBMC were separated and cultured with bovine CPC concentrations of 0 (control), 1.25, 2.5 and 5% with and without LPS (3µg·mL-1) and PHA (2.5µg·mL-1). Cell supernatants were collected at 6 and 24 hours of culture for the determination of tumour necrosis factor (TNF), interferon (IFN)-y, interleukin (IL)-10, IL-6, IL-4 and IL-2 concentrations. Following six hours of PBMC incubation at 37°C with 5% CO2, IFN-y, IL-10 and IL-2 secretion were increased with increasing concentrations of bovine CPC (p<0.05). In a dose dependent manner, IFN-y and IL-2 remained elevated following 24 hours of incubation (p<0.05). Data from this final study showed that bovine CPC modulates in vitro cytokine production of human PBMC. In conclusion, the present data suggest that bovine CPC supplementation is beneficial to highlytrained cyclists during periods of high-intensity training and competition. Bovine CPC promotes the release of cell mediated cytokines from PBMC and has the potential therefore to influence a number of physiological systems. Supplementation was associated with enhanced recovery over consecutive days of high-intensity training and competition, as evidenced by maintained exercise performance, ventilatory threshold and testosterone concentrations. Bovine CPC modulated immune function, particularly at the end of a HIT period, and there was a trend for reduced incidence of upper respiratory symptoms following bovine CPC supplementation in Study one. The data collectively suggest that bovine CPC supplementation may influence a combination of physiological pathways including the autonomic nervous system and the hypothalamic-pituitary axis.
|
10 |
The influence of bovine colostrum supplementation on immune variables and exercise performance in trained cyclistsShing, Cecilia Mary Unknown Date (has links)
Bovine colostrum is homologous in composition to human colostrum but contains greater concentrations of key bioactive components that contribute directly to growth and immunity. It has been used by humans to treat and prevent enteric pathogens and to promote wound healing and intestinal repair. Moreover, bovine colostrum has been promoted and used by athletes as a supplement to enhance immune function and improve exercise performance. This is despite limited data in support of its value to athletes and the relative absence of strong data that identify mechanisms that could improve exercise performance and immune function. The aim of the three studies that comprise this thesis was therefore to investigate the influence of a bovine colostrum protein concentrate (CPC) on immune variables, hormone concentrations, autonomic activity and exercise performance in highly-trained endurance cyclists. Study one involved monitoring exercise performance and immune variables during an eight week bovine CPC supplementation period, which included five consecutive days of high-intensity training (HIT). Twenty-nine highly-trained male road cyclists completed an initial 40-km time trial (TT40) and were then randomly assigned to either a supplement (n=14, 10 g bovine CPC per day) or placebo group (n=15, 10 g whey protein concentrate per day). Following five weeks of supplementation, the cyclists completed a second TT40 before undertaking five consecutive days of high-intensity training (HIT) that included another TT40. A final TT40 was completed one week following the HIT. Venous blood and saliva samples were collected immediately before and after each TT40, and upper respiratory illness symptoms were recorded over the experimental period. Supplementation with bovine CPC elicited improvements in TT40 performance at the end of the HIT period, when compared to the placebo group, (1.9±2.2%; mean±90% confidence limits) and maintained ventilatory threshold following the HIT (4.6±4.6%). When compared to the placebo group, bovine CPC supplementation significantly increased pre-exercise serum soluble tumour necrosis factor receptor 1 during the HIT period (p<0.039). Supplementation also suppressed the post-exercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC=-Bovine colostrum is homologous in composition to human colostrum but contains greater concentrations of key bioactive components that contribute directly to growth and immunity. It has been used by humans to treat and prevent enteric pathogens and to promote wound healing and intestinal repair. Moreover, bovine colostrum has been promoted and used by athletes as a supplement to enhance immune function and improve exercise performance. This is despite limited data in support of its value to athletes and the relative absence of strong data that identify mechanisms that could improve exercise performance and immune function. The aim of the three studies that comprise this thesis was therefore to investigate the influence of a bovine colostrum protein concentrate (CPC) on immune variables, hormone concentrations, autonomic activity and exercise performance in highly-trained endurance cyclists. Study one involved monitoring exercise performance and immune variables during an eight week bovine CPC supplementation period, which included five consecutive days of high-intensity training (HIT). Twenty-nine highly-trained male road cyclists completed an initial 40-km time trial (TT40) and were then randomly assigned to either a supplement (n=14, 10 g bovine CPC per day) or placebo group (n=15, 10 g whey protein concentrate per day). Following five weeks of supplementation, the cyclists completed a second TT40 before undertaking five consecutive days of high-intensity training (HIT) that included another TT40. A final TT40 was completed one week following the HIT. Venous blood and saliva samples were collected immediately before and after each TT40, and upper respiratory illness symptoms were recorded over the experimental period. Supplementation with bovine CPC elicited improvements in TT40 performance at the end of the HIT period, when compared to the placebo group, (1.9±2.2%; mean±90% confidence limits) and maintained ventilatory threshold following the HIT (4.6±4.6%). When compared to the placebo group, bovine CPC supplementation significantly increased pre-exercise serum soluble tumour necrosis factor receptor 1 during the HIT period (p<0.039). Supplementation also suppressed the post-exercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC=- 1.0±2.7%, placebo=-9.2±2.8%; mean±SE, p=0.017) and during the following week (bovine CPC=1.4±2.9%, placebo=-8.2±2.8%, p=0.004). In addition, bovine CPC supplementation prevented a post-exercise decrease in serum IgG2 concentration at the end of the HIT period (bovine CPC=4.8±6.8%, p=0.88; placebo=-9.7±6.9%, p=0.013) and there was a trend towards reduced incidence of upper respiratory illness symptoms in the bovine CPC group (p=0.055). Study one demonstrated that low dose bovine CPC supplementation elicited improvements in TT40 performance during a HIT period and maintained ventilatory threshold following five consecutive days of HIT. Supplementation was also found to modulate immune variables during normal training and following an acute period of intense exercise, which may have contributed to the trend toward reduced upper respiratory illness in the bovine CPC group. The maintenance of performance, prevention of post-exercise suppression of IgG2 and cytotoxic/suppressor T cells and increase in anti-inflammatory serum soluble tumour necrosis factor receptor 1 suggest that bovine CPC supplementation is beneficial to cyclists during a period of high-intensity training. The aim of Study two was to investigate the hormonal, immune and autonomic responses of competitive cyclists over a five-day stage race following eight weeks of bovine CPC supplementation. Ten highly-trained male road cyclists were randomly assigned to a placebo (n=6, 10 g whey protein concentrate/day) or bovine CPC group (n=4, 10 g bovine CPC/day). Cyclists provided a baseline saliva sample before commencing supplementation that culminated in a five day competitive cycle race. The cyclists provided daily saliva samples and heart rate variability (HRV) was measured on each day of the race. A Profile of Mood States questionnaire was completed on days one, three and five of the race and cyclists recorded upper respiratory illness symptoms throughout the experimental period. While there was no influence of bovine CPC on salivary IgA, supplementation maintained testosterone concentrations over the competition period (p<0.05) and prevented a decrease in parasympathetic activity (p<0.05). There was also a trend towards improved mood state (p=0.06) in the bovine CPC group. These data indicate that bovine CPC supplementation may prevent disturbances in autonomic function and the hypothalamic-pituitary-gonadal axis associated with consecutive days of cycle racing The aim of study three was to assess whether bovine CPC would directly stimulate cytokine production of peripheral blood mononuclear cells (PBMC), with and without lipopolysaccharide (LPS) and phytohemagglutinin (PHA) stimulation. Lipopolysaccharide (LPS) was added to cell cultures as a potent enhancer of monocyte and macrophage cytokine release and a model of exercise stress. Phytohemagglutinin was added to PBMC to stimulate T cell proliferation. Blood was sampled from four healthy, male endurance cyclists who had abstained from exercise for 48 hours. PBMC were separated and cultured with bovine CPC concentrations of 0 (control), 1.25, 2.5 and 5% with and without LPS (3µg·mL-1) and PHA (2.5µg·mL-1). Cell supernatants were collected at 6 and 24 hours of culture for the determination of tumour necrosis factor (TNF), interferon (IFN)-y, interleukin (IL)-10, IL-6, IL-4 and IL-2 concentrations. Following six hours of PBMC incubation at 37°C with 5% CO2, IFN-y, IL-10 and IL-2 secretion were increased with increasing concentrations of bovine CPC (p<0.05). In a dose dependent manner, IFN-y and IL-2 remained elevated following 24 hours of incubation (p<0.05). Data from this final study showed that bovine CPC modulates in vitro cytokine production of human PBMC. In conclusion, the present data suggest that bovine CPC supplementation is beneficial to highlytrained cyclists during periods of high-intensity training and competition. Bovine CPC promotes the release of cell mediated cytokines from PBMC and has the potential therefore to influence a number of physiological systems. Supplementation was associated with enhanced recovery over consecutive days of high-intensity training and competition, as evidenced by maintained exercise performance, ventilatory threshold and testosterone concentrations. Bovine CPC modulated immune function, particularly at the end of a HIT period, and there was a trend for reduced incidence of upper respiratory symptoms following bovine CPC supplementation in Study one. The data collectively suggest that bovine CPC supplementation may influence a combination of physiological pathways including the autonomic nervous system and the hypothalamic-pituitary axis.
|
Page generated in 0.0701 seconds