• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fast Algorithm for Modeling of Rain Events in Weather Radar Imagery

Paduru, Anirudh 20 December 2009 (has links)
Weather radar imagery is important for several remote sensing applications including tracking of storm fronts and radar echo classification. In particular, tracking of precipitation events is useful for both forecasting and classification of rain/non-rain events since non-rain events usually appear to be static compared to rain events. Recent weather radar imaging-based forecasting approaches [3] consider that precipitation events can be modeled as a combination of localized functions using Radial Basis Function Neural Networks (RBFNNs). Tracking of rain events can be performed by tracking the parameters of these localized functions. The RBFNN-based techniques used in forecasting are not only computationally expensive, but also moderately effective in modeling small size precipitation events. In this thesis, an existing RBFNN technique [3] was implemented to verify its computational efficiency and forecasting effectiveness. The feasibility of modeling precipitation events using RBFNN effectively was evaluated, and several modifications to the existing technique have been proposed.

Page generated in 0.1038 seconds