• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tatouage 3D robuste / Robust 3D watermarking

Rolland-Nevière, Xavier 12 November 2014 (has links)
Les modèles 3D sont des contenus précieux très utilisés dans l'industrie, et donc la cible potentielle de piratages. Le tatouage robuste pour les maillages 3D apporte une réponse au problème du traçage de traître. Dans l'état de l'art du domaine, la couche d'adaptation du contenu en particulier est testée face des attaques standards. Une approche robuste à la pose est alors étudiée. Elle utilise une estimation robuste de l'épaisseur, définie comme la distance un nuage de points construits à partir de mesures du diamètre. Les performances expérimentales montrent qu'elle forme un point de départ prometteur pour le tatouage robuste de maillages 3D posés. Pour les maillages statiques, la modulation des distances radiales est une approche efficace du tatouage. Elle a été formulée comme un problème d'optimisation quadratique sous contrainte, dont nous proposons plusieurs extensions : une transformée par étalement, des primitives de référence calculées de manière intégrale, des directions de déplacement arbitraires, et de nouvelles métriques pour minimiser la distorsion perçue par un utilisateur. Des expériences illustrent leurs bénéfices pour le compromis entre la robustesse et la fidélité du tatouage. La sécurité est analysée par l'intermédiaire de deux mécanismes de protection et par une série d'attaques et de contre-Mesures. Un système de resynchronisation est intégré afin d'améliorer la résistance au rognage. Des points de recalage sont insérés dans une configuration spécifique qui porte les informations habituellement éliminées par l'attaque. Au décodage, elles sont récupérées de manière aveugle. Un gain significatif des performances est mesuré expérimentalement. / 3D models are valuable assets widely used in the industry and likely to face piracy issues. This dissertation deals with robust mesh watermarking that is used for traitor-Tracing. Following a review of state-Of-The-Art 3D watermarking systems, the robustness of several content adaptation transforms are benchmarked. An embedding domain robust against pose is investigated, with a thickness estimation based on a robust distance function to a point cloud constructed from some mesh diameters. A benchmark showcases the performance of this domain that provides a basis for robust watermarking in 3D animations. For static meshes, modulating the radial distances is an efficient approach to watermarking. It has been formulated as a quadratic programming problem minimizing the geometric distortion while embedding the payload in the radial distances. This formulation is leveraged to create a robust watermarking framework, with the integration of the spread-Transform, integral reference primitives, arbitrarily selected relocation directions and alternate metrics to minimize the distortion perceived. Benchmarking results showcase the benefits of these add-Ons w.r.t the fidelity vs. robustness watermarking trade-Off. The watermark security is then investigated with two obfuscation mechanisms and a series of attacks that highlight the remaining limitations. A resynchronization approach is finally integrated to deal with cropping attacks. The resynchronization embeds land-Marks in a configuration that conveys synchronization information that will be lost after cropping. During the decoding, this information is blindly retrieved and significant robustness improvements are achieved.
2

Steganography Through Perspective Invariance

Yasaroglu, Yagiz 01 September 2012 (has links) (PDF)
A novel approach for watermarking of 3D models is introduced, for which data is embedded into 3D models, whereas extracted from their projected 2D visual or 2D-plus-depth representations. Such a watermarking system is valuable, since most of the 3D content is being consumed as 2D visual data. Apart from the efficiency of embedding data into 3D models before generation of arbitrary 2D projections, in some use cases, such as free viewpoint video or computer games, 2D content has to be rendered at the client, where watermarking is less secure. In order to achieve this aim, 3D-2D perspective projection invariants, as well as 3D projective invariants are used and utilization of such invariants enables the method to be independent of the viewpoint from which 2D representations are generated. The first method proposed employs a perspective projection invariant to extract hidden data from an arbitrary 2D view of a watermarked 3D model. Data is encoded in the relative positions of six interest points, selection of which requires minimal criteria. Two main problems for such a watermarking system are identified as noise sensitivity of the invariant and repeatability of the interest point detection. By optimizing an objective function considering this sensitivity, the optimal 3D interest point displacements are obtained. Performance of the proposed system is evaluated through simulations on polygonal 3D mesh models and the results strongly indicate that perspective invariant-based watermarking is feasible. As an extenstion for 2D plus depth representation of 3D models, data embedded in 3D models is also detected by combining information in 2D views and range data by utilizing another projective invariant. Finally, the problem of repeatable interest point detection that remain detectable after data embedding, is also examined and a novel method to identify such repeatable interest points is presented. The proposed methods indicate a new direction in watermarking research.
3

Watermarking For 3d Representations

Koz, Alper 01 August 2007 (has links) (PDF)
In this thesis, a number of novel watermarking techniques for different 3D representations are presented. A novel watermarking method is proposed for the mono-view video, which might be interpreted as the basic implicit representation of 3D scenes. The proposed method solves the common flickering problem in the existing video watermarking schemes by means of adjusting the watermark strength with respect to temporal contrast thresholds of human visual system (HVS), which define the maximum invisible distortions in the temporal direction. The experimental results indicate that the proposed method gives better results in both objective and subjective measures, compared to some recognized methods in the literature. The watermarking techniques for the geometry and image based representations of 3D scenes, denoted as 3D watermarking, are examined and classified into three groups, as 3D-3D, 3D-2D and 2D-2D watermarking, in which the pair of symbols identifies whether the watermark is embedded-detected in a 3D model or a 2D projection of it. A detailed literature survey on 3D-3D watermarking is presented that mainly focuses on protection of the intellectual property rights of the 3D geometrical representations. This analysis points out the specific problems in 3D-3D geometry watermarking , such as the lack of a unique 3D scene representation, standardization for the coding schemes and benchmarking tools on 3D geometry watermarking. For 2D-2D watermarking category, the copyright problem for the emerging free-view televisions (FTV) is introduced. The proposed watermarking method for this original problem embeds watermarks into each view of the multi-view video by utilizing the spatial sensitivity of HVS. The hidden signal in a selected virtual view is detected by computing the normalized correlation between the selected view and a generated pattern, namely rendered watermark, which is obtained by applying the same rendering operations which has occurred on the selected view to the original watermark. An algorithm for the estimation of the virtual camera position and rotation is also developed based on the projective planar relations between image planes. The simulation results show the applicability of the method to the FTV systems. Finally, the thesis also presents a novel 3D-2D watermarking method, in which a watermark is embedded into 3-D representation of the object and detected from a 2-D projection (image) of the same model. A novel solution based on projective invariants is proposed which modifies the cross ratio of the five coplanar points on the 3D model according to the watermark bit and extracts the embedded bit from the 2D projections of the model by computing the cross-ratio. After presenting the applicability of the algorithm via simulations, the future directions for this novel problem for 3D watermarking are addressed.

Page generated in 0.085 seconds