1 |
Turbulent complex flows reconstruction via data assimilation in large eddy models / Reconstruction d’écoulements turbulents complexes par assimilation de données images dans des modèles grandes échellesChandramouli, Pranav 19 October 2018 (has links)
L'assimilation de données en tant qu'outil pour la mécanique des fluides a connu une croissance exponentielle au cours des dernières décennies. La possibilité de combiner des mesures précises mais partielles avec un modèle dynamique complet est précieuse et a de nombreuses applications dans des domaines allant de l'aérodynamique, à la géophysique et à l’aéraulique. Cependant, son utilité reste limitée en raison des contraintes imposées par l'assimilation de données notamment en termes de puissance de calcul, de besoins en mémoire et en informations préalables. Cette thèse tente de remédier aux différentes limites de la procédure d'assimilation pour faciliter plus largement son utilisation en mécanique des fluides. Un obstacle majeur à l'assimilation des données est un coût de calcul prohibitif pour les écoulements complexes. Une modélisation de la turbulence à grande échelle est intégrée à la procédure d'assimilation afin de réduire considérablement la coût de calcul et le temps requis. La nécessité d'une information volumétrique préalable pour l'assimilation est abordée à l'aide d'une nouvelle méthodologie de reconstruction développée et évaluée dans cette thèse. L'algorithme d'optimisation reconstruit les champs 3D à partir d'observations dans deux plans orthogonaux en exploitant l'homogénéité directionnelle. La méthode et ses variantes fonctionnent bien avec des ensembles de données synthétiques et expérimentaux fournissant des reconstructions précises. La méthodologie de reconstruction permet également d’estimer la matrice de covariance d’ébauche indispensable à un algorithme d’assimilation efficace. Tous les ingrédients sont combinés pour effectuer avec succès l'assimilation de données variationnelles d'un écoulement turbulent dans le sillage d'un cylindre à un nombre de Reynolds transitoire. L'algorithme d'assimilation est validé pour des observations volumétriques synthétiques et est évalué sur des observations expérimentales dans deux plans orthogonaux. / Data assimilation as a tool for fluid mechanics has grown exponentially over the last few decades. The ability to combine accurate but partial measurements with a complete dynamical model is invaluable and has numerous applications to fields ranging from aerodynamics, geophysics, and internal ventilation. However, its utility remains limited due to the restrictive requirements for performing data assimilation in the form of computing power, memory, and prior information. This thesis attempts at redressing various limitations of the assimilation procedure in order to facilitate its wider use in fluid mechanics. A major roadblock for data assimilation is the computational cost which is restrictive for all but the simplest of flows. Following along the lines of Joseph Smagorinsky, turbulence modelling through large-eddy simulation is incorporated in to the assimilation procedure to significantly reduce computing power and time required. The requirement for prior volumetric information for assimilation is tackled using a novel reconstruction methodology developed and assessed in this thesis. The snapshot optimisation algorithm reconstructs 3D fields from 2D cross- planar observations by exploiting directional homogeneity. The method and its variants work well with synthetic and experimental data-sets providing accurate reconstructions. The reconstruction methodology also provides the means to estimate the background covariance matrix which is essential for an efficient assimilation algorithm. All the ingredients are combined to perform variational data assimilation of a turbulent wake flow around a cylinder successfully at a transitional Reynolds number. The assimilation algorithm is validated with synthetic volumetric observation and assessed on 2D cross-planar observations emulating experimental data.
|
2 |
Αριθμητική προσομοίωση της τρισδιάστατης τυρβώδους ροής θραυομένων κυμάτων στην παράκτια ζώνη απόσβεσηςΔημακόπουλος, Άγγελος 27 July 2010 (has links)
Στην παρούσα διατριβή παρουσιάζεται η αριθμητική μέθοδος προσομοίωσης μεγάλων κυμάτων (LWS), για τη μελέτη της τυρβώδους ροής που αναπτύσσεται κατά τη θραύση κυμάτων (θραύση εκχείλισης) πάνω από πυθμένα σταθερής κλίσης. Κατά τη μέθοδο LWS, οι μεγάλες κλίμακες των τυρβωδών διακυμάνσεων της ταχύτητας και της ελεύθερης επιφάνειας επιλύονται αριθμητικά, ενώ η επίδραση των μικρών κλιμάκων λαμβάνεται υπόψη με τη χρήση υποπλεγματικού (subgrid scale ή SGS) μοντέλου τάσεων, αντίστοιχο της μεθόδου προσομοίωσης μεγάλων δινών LES. Η θραύση εκχείλισης προσομοιώνεται από τη δράση των SGS τάσεων, οι οποίες δημιουργούν το στρόβιλο θραύσης και παράγουν εγκάρσια στροβιλότητα στο μέτωπο του κύματος. Η μέθοδος LWS εφαρμόζεται σε σύζευξη με τις εξισώσεις Euler και των αντιστοίχων μη-γραμμικών οριακών συνθηκών. Επιπλέον, ως σημείο αναφοράς χρησιμοποιείται η προσομοίωση της θραύσης εκχείλισης με μοντέλο επιφανειακού στροβίλου, κατά το οποίο η επίδραση του στροβίλου θραύσης υπολογίζεται εμπειρικά. Το μοντέλο προσαρμόζεται στις εξισώσεις δισδιάστατης μη συνεκτικής ροής, με τη χρήση κατάλληλα τροποποιημένων οριακών συνθηκών. Παρουσιάζονται αποτελέσματα δισδιάστατης ροής, κατά τη θραύση κύματος κάθετα στην ακτογραμμή, και τρισδιάστατης ροής, κατά τη θραύση κύματος κάθετα και υπό γωνία ως προς την ακτογραμμή. Γενικά, τα αποτελέσματα της ελεύθερης επιφάνειας και του πεδίου ταχυτήτων στη ζώνη απόσβεσης, κατά την θραύση κυμάτων κάθετα στην ακτογραμμή και πάνω από πυθμένα κλίσης 1/35, δείχνουν ικανοποιητική συμφωνία με τις αντίστοιχες πειραματικές μετρήσεις. Ωστόσο, παρά την ασθενή μεταβολή της ροής εγκάρσια στην ακτογραμμή, παρατηρείται ότι, λόγω της τρισδιάστατης δομής του στροβίλου, ο μηχανισμός της θραύσης προσομοιώνεται ικανοποιητικότερα από τη μέθοδο LWS, όταν αυτή συνδυάζεται με τρισδιάστατο πεδίο ροής. Τέλος, εξετάζεται η διάδοση και η θραύση κυμάτων πάνω από πυθμένα σταθερής κλίσης 1/35, τα οποία προσπίπτουν στην ακτογραμμή υπό γωνία 42,45 μοιρών σε μεγάλο βάθος. Οι κορυφογραμμές του κύματος θραύονται σταδιακά και η δράση των SGS τάσεων παράγει εγκάρσια και διαμήκη στροβιλότητα. Ο στρόβιλος θραύσης αναπτύσσεται κατά μήκος των θραυομένων κορυφογραμμών, με γωνία προσανατολισμού αντίστοιχη της γωνίας πρόσπτωσης κύματος στη γραμμή θραύσης. / A method named Large Wave Simulation is presented, for the study of turbulent flow that develops during wave breaking (spilling breakers) over a constant-slope bed. According to LWS method, large scales of velocity field and free-surface elevation are numerically resolved, whereas the corresponding subgrid scale (SGS) effects are accounted for by a SGS stress model, equivalent to the ones used in Large Eddy Simulation (LES) method. Spilling breaking is simulated by a SGS stress field that creates an eddy breaker and produces spanwise vorticity at the breaking wave front. LWS method is used in conjuction with the Euler equation and the corresponding nonlinear boundary conditions. Moreover, as a
reference, a surface roller (SR) model is used for the simulation of spilling breaking, which necessitates empirical parameters, for the calculation of the eddy breaker effect. The SR model is adapted for two-dimensional, inviscid but rotational free-surface flow, by use of appropriately modified boundary conditions. Results of two-dimensional flow during breaking waves, propagating perpendicularly to the shoreline, are presented, as well as results of threedimensional flow during breaking waves, propagating perpendicularly and obliquely to the shoreline. In the case of waves breaking perpendicularly to the shoreline over a constant slope (1/35) bed, free-surface elevation and velocities results are in accordance with existing
experimental data. However, despite of the flow being weakly dependent to the cross-shore direction, due to the fact that the eddy breaker is three-dimensional, LWS method performs better when combined with a three-dimensional flow field. Finally, oblique wave propagation (42,45 degrees at deep water) and breaking over a constant-slope (1/35) bed is simulated. Wave
crestlines break gradually and the effect of the SGS stress field produces spanwise (longshore) and streamwise (cross-shore) vorticity. The eddy breaker develops along the breaking wave front and its orientation follows the shape of the breaking crestlines.
|
3 |
[en] VISUALIZING FLOW IN BLACK-OIL RESERVOIRS USING VOLUMETRIC LIC / [pt] VISUALIZAÇÃO DE FLUXO EM RESERVATÓRIOS DE PETRÓLEO USANDO LIC VOLUMÉTRICOALLAN WERNER SCHOTTLER 13 December 2018 (has links)
[pt] Na indústria de petróleo, é imprescindível a visualização clara e desambigua de campos vetoriais resultantes de simulações numéricas de reservatórios de petróleo. Nesta dissertação, estudamos o uso da convolução de integral de linha (Line Integral Convolution – LIC) para gerar imagens de campos vetoriais 3D estacionários e aplicar o resultado em um visualizador volumétrico na GPU. Devido a densidade de informação presente na visualização volumétrica, estudamos os uso de texturas esparsas como entrada para o algoritmo de LIC e aplicamos funções de transferência para designar cor e opacidade a volumes de campos escalares, a fim de codificar informações visuais a voxels e aliviar o problema de oclusão. Além disso, tratamos o problema de codificação da direção de fluxo, inerente do LIC, usando uma extensão do algoritmo – Oriented LIC (OLIC). Por último, demonstramos um método de animação do volume a fim de ressaltar a direção do fluxo ainda mais. Comparamos então resultados do algoritmo LIC com o de OLIC. / [en] In the oil industry, clear and unambiguous visualization of vector fields resulting from numerical simulations of black-oil reservoirs is essential. In this dissertation, we study the use of line integral convolution techniques (LIC) for imaging 3D steady vector fields and apply the results to a GPU-based volume rendering algorithm. Due to the density of information present in volume renderings of LIC images, we study the use of sparse textures as input to the LIC algorithm and apply transfer functions to assign color and opacity to scalar fields in order to encode visual information to voxels and alleviate the occlusion problem. Additionally, we address the problem of encoding flow orientation, inherent to LIC, using an extension of the algorithm – Oriented LIC (OLIC). Finally, we present a method for volume animation in order to enhance the flow orientation. We then compare results obtained with LIC and with OLIC.
|
4 |
High-Order Spectral Element Method Simulation of Flow Past a 30P30N Three-Element High Lift WingVadsola, Mayank 10 September 2020 (has links)
The purpose of a multi-element high lift device is to increase lift dramatically
while controlling the stall limit. The fluid flow over a multi-element high lift device
has been explored widely both experimentally and numerically at high Reynolds
numbers (O(10^6 )). The numerical simulations use turbulence models and hence
details of the flow are not yet available. Low Reynolds number (O(10^4 )) flows
over high lift devices have not been explored until recently. These lower Reynolds
number flows have applications in the development of small aerial vehicles. The
present work discusses both two-dimensional and three-dimensional direct numer-
ical simulations of fluid flow over a 30P30N three-element high lift system using a
high-order spectral element method code, Nek5000, that solves the incompressible
Navier-Stokes equations. The intricate geometry of the multi-element device poses
a challenge for the high-order spectral element method. We study the complex
flow physics in the slat cove region and the wake/shear layer interaction over a
30P30N three-element high lift device. The targeted cases are at Reynolds num-
bers based on stowed chord lengths (Rec ) of 8.32 × 10^3 , 1.27 × 10^4 , and 1.83 × 10^4 at angle of attack of 4. A critical interval for Rec has previously been found
between 1.27 × 10^4 and 1.38 × 10^4 in experiments. This divides the flow into
two types: when Rec is below the critical interval, no roll-up is observed in the
slat cove and Görtler vortices dominate the slat wake; however when the Rec is
above the critical interval, a roll-up is observed in the slat cove and co-existence
of streamwise and spanwise vortices is confirmed in the slat wake. We confirm
the presence of the critical interval from the simulations performed at three values of Rec . Lift and drag analysis is provided along with pressure coefficient plots
for each element of the multi-element airfoil. Different vortical structures are also
identified in the transition of flow from two dimensions to three dimensions. The
relevant validation is performed with the available experimental data.
|
5 |
BLAST LOAD SIMULATION USING SHOCK TUBE SYSTEMSIsmail, Ahmed January 2017 (has links)
With the increased frequency of accidental and deliberate explosions, the response of civil infrastructure systems to blast loading has become a research topic of great interest. However, with the high cost and complex safety and logistical issues associated with live explosives testing, North American blast resistant construction standards (e.g. ASCE 59-11 & CSA S850-12) recommend the use of shock tubes to simulate blast loads and evaluate relevant structural response.
This study aims first at developing a 2D axisymmetric shock tube model, implemented in ANSYS Fluent, a computational fluid dynamics (CFD) software, and then validating the model using the classical Sod’s shock tube problem solution, as well as available shock tube experimental test results. Subsequently, the developed model is compared to a more complex 3D model in terms of the pressure, velocity and gas density. The analysis results show that there is negligible difference between the two models for axisymmetric shock tube performance simulation. However, the 3D model is necessary to simulate non-axisymmetric shock tubes.
The design of a shock tube depends on the intended application. As such, extensive analyses are performed in this study, using the developed 2D axisymmetric model, to evaluate the relationships between the blast wave characteristics and the shock tube design parameters. More specifically, the blast wave characteristics (e.g. peak reflected pressure, positive phase duration and the reflected impulse), were compared to the shock tube design parameters (e.g. the driver section pressure and length, the driven
v
section length, and perforation diameter and their locations). The results show that the peak reflected pressure increases as the driver pressure increases, while a decrease of the driven length increases the peak reflected pressure. In addition, the positive phase duration increases as both the driver length and driven length are increased. Finally, although shock tubes generally generate long positive phase durations, perforations located along the expansion section showed promising results in this study to generate short positive durations.
Finally, the developed 2D axisymmetric model is used to optimize the dimensions of a proposed large-scale conical shock tube system developed for civil infrastructure blast response evaluation applications. The capabilities of this proposed shock tube system are further investigated by correlating its design parameters to a range of explosion threats identified by different hemispherical TNT charge weight and distance scenarios. / Thesis / Master of Applied Science (MASc)
|
6 |
Multi-Directional Phase-Contrast Flow MRI in Real TimeKollmeier, Jost M. 31 August 2020 (has links)
No description available.
|
7 |
Particle manipulation in minichannels for enhanced digital holographic microscopy observation / Manipulation de mcroparticules dans des minicanaux pour une observation améliorée au microscope holographique digitale.Perfetti, Claire 24 April 2014 (has links)
The development of techniques targeting the manipulation of particles of different<p>sizes - mostly in the nano to millimeter scale - when dispersed in a carrier medium, is an increasingly important topic in many fields such as biotechnology,nanotechnology, medicine, biophysics and environmental monitoring and remediation. The underlying rationale for using such techniques stands in the sometimes compelling requirements of avoiding clogging as in micro/nano channel flows, of limiting sedimentation and wall interactions in particle/cell counting, of enhancing particle-surface interaction as in bio-sensing or of facilitating characterization and sorting as in bio-physical applications. Being developed in the frame of a Belgian national project devoted to the characterization and counting of pollutant in water media by digital holographic microscopy, this thesis tackles a peculiar class of particle manipulation techniques, commonly known as Focusing. The main goal of focusing is to avoid at best wall particle interactions and sedimentation, prevalent issues for dispersions owing in micro/mini-channels especially for applications such as optical characterization and counting.<p><p>The main attention was given to two flow focusing techniques - Hydrodynamic and Acoustic Focusing - for their wide range applicability and cost effectiveness. Hydrodynamic Focusing consists in controlling the position and spreading of the sample under investigation by means of a so-called sheath flow. A low-cost, nevertheless effective, prototype has been conceived, designed, manufactured and tested. It allowed for controlling the spreading of the sample stream and achieving a focusing ratio accounting for only 4% of the original stream width.<p><p>Acoustic Focusing takes advantage of the time-averaged pressure fields induced by the creation of standing waves in channels to manipulate and focus the dispersed particles. In the frame of this thesis, several devices have been developed using square cross section glass mini-channels. Aside from the cost-effectiveness, particles where focused in a somehow unexpected but high reproducible 3D matrix-like structure. A novel numerical model has also been implemented in order to study the conditions leading to the 3D structure formation. A good agreement between experimental and numerical results was found./Ce projet de thèse portant sur la manipulation de micro-particules dans des minicanaux s'inscrit dans le développement de cellules de flux pour des applications biologiques, qui est l'une des problématiques du projet HOLOFLOW, soutenu par<p>la région de Bruxelles Capitale. Les cellules de flux doivent permettre l'observation et la reconnaissance des micro-organismes vivants dans une large gamme de dimensions (de quelques microns à 1mm) avec la microscopie holographie digitale.<p>La problématique d'observation et de manipulation des microorganismes en flux est liée au clogging (bouchage) et à la sédimentation qui limitent la durée de vie des cellules d'observation. Ce projet de thèse s'inscrit dans cette problématique et propose deux axes d'étude pour limiter l'interaction entre organismes et canaux, la focalisation hydrodynamique, basée sur le guidage de flux, et la focalisation acoustique, basée sur la manipulation des particules.<p><p>La focalisation hydrodynamique est une technique basée sur l'injection différentiée de l'échantillon à observer et d'un fluide support. La différence des vitesses d'injection des flux permet de contrôler la dispersion des particules afin d'optimiser leur observation. Dans le cadre de cette thèse, un prototype à bas-coût a été développé et construit, permettant de focaliser les particules dans un faisceau jusqu'à 4% de leur faisceau incident.<p><p>La focalisation acoustique utilise la création d'une onde acoustique stationnaire afin de regrouper les particules en suspension au centre du canal. Au cours de cette thèse, plusieurs prototypes ont été réalisés, mettant en évidence la formation de motifs tridimensionnaux. Un model numérique a été spécialement développé afin d'étudier les conditions de génération de ces motifs, et de nombreuses expériences ont été menées afin de s'assurer de leur reproductibilité. Une bonne adéquation entre la position des particules mesurée et calculée numériquement a été démontrée. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
8 |
Struktura proudění a energetické přeměny v kolenové sací troubě / Flow structure and energy transformation in an elbow draft tubeŠtefan, David January 2011 (has links)
Draft tube is very important part of hydraulic turbines. Only optimum work together with turbine can bring highest performance of this machine set. Hence it is necessary to deal with character of flow in the draft tube for different operating conditions. Efficiency of the draft tube depends on many phenomena of flow. Observing these phenomena and finding their relation with energetic transformation in the draft tube is a suitable tool to judge quality of draft tube performance. Incorrect design of the draft tube can sometimes cause lower efficiency of whole machine set. The goal of this thesis is finding the main reasons causing draft tube efficiency drop for given operating conditions.
|
Page generated in 0.0441 seconds