• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 363
  • 55
  • 46
  • 43
  • 37
  • 16
  • 16
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 756
  • 756
  • 257
  • 257
  • 248
  • 115
  • 111
  • 87
  • 57
  • 52
  • 51
  • 50
  • 49
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

An Explorative Study of Electrochemical Additive Manufacturing

Brant, Anne 12 September 2016 (has links)
No description available.
352

Study of Binding Copper Powders by Electrochemical Deposition

Sharan Kumar, Varun 12 September 2016 (has links)
No description available.
353

Embedding fiber Bragg grating sensors through ultrasonic additive manufacturing

Schomer, John J. 08 August 2017 (has links)
No description available.
354

Impact of Infill Design on Mechanical Strength and Production Cost in Material Extrusion Based Additive Manufacturing

Baich, Liseli Jeanette January 2016 (has links)
No description available.
355

DEVELOPMENT OF A RAPID, CONTINUOUS 3D NANOPRINTING SYSTEM BASED ON MULTIPHOTON ABSORPTION

Paul Somers (13949883) 13 October 2022 (has links)
<p> 3D printing has established itself as a critical tool for manufacturing in all areas. It has evolved from a purely rapid prototyping technique into a feasible process for large-scale processing. A wide variety of 3D printing processes exist across an extreme range of size, from meters to nanometers. Much of the current technological advances come from pushing fabrication techniques to smaller and smaller scales. For 3D printing this has led to the rise of two-photon polymerization, a direct laser writing process with submicron structuring capabilities. Two-photon polymerization has proven its worth as a nanoscale 3D fabrication technique but is often considered slow and expensive, two undesirable qualities for high throughput manufacturing. Parallelization methods such as projection lithography are potential solutions to increasing the throughput capabilities of two-photon polymerization 3D printing. Additionally, the drive for further reducing the print size has inspired printing resolution enhancing strategies in two-photon polymerization printing by processes such as stimulated emission depletion (STED) and other STED-inspired pathways. This work will explore avenues for improving two-photon polymerization printing throughput and resolution.</p> <p> First, a two-photon polymerization printing system is constructed with a secondary laser for controlling polymerization inhibition. Through a STED process, a 65 nm wide printed line feature was achieved. Alongside this, a characterization and verification methodology for choosing new photoinitiator molecules for similar inhibition lithography processes is presented. Through implementation of tests such as Z-scan, fluorescence depletion, ultrafast transient spectroscopy and UV-Vis absorption and fluorescence measurements a promising new photoinitiator with 5-factor improvement in printing efficiency is found. </p> <p> Second, a projection lithography scheme is developed for rapid two-photon 3D printing. A digital micro-mirror device (DMD) is utilized for dynamic pattern generation and the effects of its dispersion properties are considered. Through a spatiotemporal focusing process, continuous 3D printing is achieved at vertical prints speeds of 1 mm s-1. Simulations performed representing this rapid printing process indicate a ~1 µm layer print feature size for large areas of exposure. Comparably, a printed vertical feature size of ~ 1 µm was achieved. Lateral feature sizes ~200 nm were also demonstrated in fabrication. A variety of complex 3D structures are printed for demonstration of the spatiotemporal focusing projection lithography process including millimeter scale objects with micrometer scale 3D features.</p> <p> Finally, resolution enhancing strategies are implemented into the continuous, projection two-photon lithography technique. An investigation of the inhibition properties of a variety of photoinitiator systems for inhibiting polymerization achieved with low repetition rate laser exposure is presented. A planar polymerization inhibiting region is generated by creating a light sheet propagating perpendicularly to the projection printing plane. </p>
356

HEIGHT PROFILE MODELING AND CONTROL OF INKJET 3D PRINTING

Yumeng Wu (13960689) 14 October 2022 (has links)
<p>Among all additive manufacturing processes, material jetting, or inkjet 3D printing, builds the product similar to the traditional inkjet printing, either by drop-on-demand or continuous printing. Aside from the common advantages as other additive manufacturing methods, it can achieve higher resolution than other additive manufacturing methods. Combining its ability to accept a wide range of functional inks, inkjet 3D printing is predominantly used in pharmaceutical and biomedical applications. A height profile model is necessary to achieve better estimation of the geometry of a printed product. Numerical height profile models have been documented that can estimate the inkjet printing process from when the droplet hits the substrate till fully cured. Although they can estimate height profiles relatively accurately, these models generally take a long time to compute. A simplified model that can achieve sufficient accuracy while reducing computational complexity is needed for real-time process control. In this work, a layer-to-layer height propagation model that aims to balance computational complexity and model accuracy is proposed and experimentally validated. The model consists of two sub-models where one is dedicated to multi-layer line printing and the other is more broadly applicable for multi-layer 2D patterns. Both models predict the height profile of drops through separate volume and area layer-to-layer propagation. The layer-to-layer propagation is based on material flow and volume conservation. The models are experimentally validated on an experimental inkjet 3D printing system equipped with a heated piezoelectric dispenser head made by Microdrop. There are notable similarities between inkjet 3D printing and inkjet image printing, which has been studied extensively to improve color printing quality. Image processing techniques are necessary to convert nearly continuous levels of color intensities to binary printing map while satisfying the human visual system at the same time. It is reasonable to leverage such image processing techniques to improve the quality of inkjet 3D printed products, which might be more effective and efficient. A framework is proposed to adapt image processing techniques for inkjet 3D printing. Standard error diffusion method is chosen as a demonstration of the framework to be adapted for inkjet 3D printing and this adaption is experimentally validated. The adapted error diffusion method can improve the printing quality in terms of geometry integrity with low demand on computation power. Model predictive control has been widely used for process control in various industries. With a carefully designed cost function, model predictive control can be an effective tool to improve inkjet 3D printing. While many researchers utilized model predictive control to indirectly improves functional side of the printed products, geometry control is often overlooked. This is possibly due to the lack of high quality height profile models for inkjet 3D printing for real-time control. Height profile control of inkjet 3D printing can be formulated as a constrained non-linear model predictive control problem. The input to the printing system is always constrained, as droplet volume not only is bounded but also cannot be continuously adjusted due to the limitation of the printhead.  A specific cost function is proposed to account for the geometry of both the final printed product and the intermediate layers better. The cost function is further adjusted for the inkjet 3D printing system to reduce memory usage for larger print geometries by introducing sparse matrix and scaler cost weights. Two patterns with different parameter settings are simulated using model predictive controller. The simulated results show a consistent improvement over open-loop prints. Experimental validation is also performed on both a bi-level pattern and a P pattern, same as that printed with adapted error diffusion for inkjet 3D printing. The model predictive controlled printing outperforms the open-loop printing. In summary, a set of layer-to-layer height propagation profile models for inkjet 3D printing are proposed and experimentally validated. A framework to adapt error diffusion to improve inkjet 3D printing is proposed and validated experimentally. Model predictive control can also improve geometric integrity of inkjet 3D printing with a carefully designed cost function to address memory usage. It is also experimentally validated.</p>
357

Chair-side fabrication of customized interim prostheses using additive manufacturing - A descriptive study

Meland, Arthur, Tollefors, Christopher January 2016 (has links)
Objective: The aim of this study is to describe additive manufacturing and evaluate how dentistry can take advantage of this technique today in general and for chair-side production of customized interim prostheses in particular. Method: Searches was made in the databases PubMed and ScienceDirect for information about additive manufacturing for dental applications. Searches was also made in the Rapid Prototyping Journal. Contacts was established with companies working with additive manufacturing for dental applications. The search engine Google was also used to find information about the additive manufacturing techniques in general and for dental applications. Results: Additive manufacturing is a rapidly expanding industry and can currently be used for several different applications in dentistry. It is today possible to use this technique, with materials approved for intraoral use, for chair-side fabrication of customized interim prostheses. Conclusion: Today it is possible to use additive manufacturing for chair-side production of interim prostheses. However, currently this production technique is still far too time consuming to be used effectively chair-side. With the current advancements in the area of additive manufacturing there is no doubt the technique can be utilized in the future and hopefully serve as a more reliable and safe way of producing interim prostheses. / Objective: The aim of this study is to describe additive manufacturing and evaluate how dentistry can take advantage of this technique today in general and for chair-side production of customized interim prostheses in particular. Method: Searches was made in the databases PubMed and ScienceDirect for information about additive manufacturing for dental applications. Searches was also made in the Rapid Prototyping Journal. Contacts was established with companies working with additive manufacturing for dental applications. The search engine Google was also used to find information about the additive manufacturing techniques in general and for dental applications. Results: Additive manufacturing is a rapidly expanding industry and can currently be used for several different applications in dentistry. It is today possible to use this technique, with materials approved for intraoral use, for chair-side fabrication of customized interim prostheses. Conclusion: Today it is possible to use additive manufacturing for chair-side production of interim prostheses. However, currently this production technique is still far too time consuming to be used effectively chair-side. With the current advancements in the area of additive manufacturing there is no doubt the technique can be utilized in the future and hopefully serve as a more reliable and safe way of producing interim prostheses.
358

Designing a Hyperbolic Lens Antenna using 3D Printing Technology

Thorell, Alexander, Cederberg, Jonas January 2020 (has links)
To increase capacity, lower latency, and boostdata rates, new higher gain antennas that can transmitmillimeter-waves are needed. Dielectric lens antennas arean attractive potential solution. The J1-project investigatedthe permittivity and losses of four 3D printing filamentsin four frequency bands, to better design a hyperboliclens antenna in the Ka-band with a WR-28 StandardGain Horn Antenna acting as a feed. To measure thedielectric filaments, the TRL calibration method wasevaluated in simulation and employed in measurementstogether with the NRW method for permittivity extraction.Shortcomings of these methods near resonant frequencieswere marginally analyzed in simulation, and the results ofthe processed measured permittivities were shown to havesignificant uncertainty in the loss tangent. Nevertheless thedatasheet specified&lt;(r) =3 was shown to have meanrelative permittivity∗r= 3.53−0.13jin the Ka-band.Using the measurement data, a hyperbolic lens antennawas designed and optimized in simulation for the centerfrequency of the Ka-band at 33.25 GHz. The simulatedresults show an aperture efficiency of 36.2% and a gainof 30.4 dBi. / För att öka kapaciteten, sänka för- dröjningen samt höja datahastigheterna så behövs högre förstärkta antenner som kan transmittera millimetervågor. Här är dielektriska linsantenner en attraktiv, potentiell lösning. J1-projektet undersökte permittiviteten och förlusterna av fyra 3D-utskriftsfilament i fyra frekvensband, för att bättre designa en hyperbolisk linsantenn i Ka- bandet för en matande WR-28 “Standard Gain Horn Antenna”. För att kunna mäta de dielektriska filamenten så var TRL-kalibreringsmetoden utvärderad i simulering och nyttjad vid mätning tillsammans med NRW-metoden för att betsämma permittiviteten. Nackdelarna bakom dessa metoder nära resonanta frekvenser var marginellt analyserade i simulering och resultaten av de behandlade, mätta permittiviteterna visade sig ha märkbara osäker- heter i deras förlusttangens. Oavsett så blev medelvärdet på det uppmätta resultatet; av det databladsspecificerade materialet R (∈r) = 3; ∈*r = 3,53 -0,13j i Ka-bandet. Med hjälp av databladsspecifikationerna, så designades samt optimiserades en hyperbolisk linsantenn i simulering för Ka-bandets mittfrekvens på 33,25 GHz. De simulerade resultaten visar på en apertureffektivitet på 36,2% och en förstärkning på 30,4 dBi. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
359

Making History: Applications of Digitization and Materialization Projects in Repositories

Miller, Megan January 2014 (has links)
This project draws upon material culture, digital humanities, and archival theory and method in the service of public history investigations. After selecting an artifact and performing object analysis, I will digitize the artifact and materialize a new object. I will then perform another object analysis on the 3D printed object. This exercise will provide the familiar benefits of object analysis, but the decisions and interactions necessary to digitize and materialize the object provide a fresh perspective. I will propose approaches for performing similar investigations in repositories, along with a pedagogical argument for doing so. By emphasizing modularity, flexibility, and minimal capital requirements, I hope these approaches can be adapted to a variety of institutions and audiences. Researchers will reap the benefits of intellectual and emotional engagement, hands-on learning, and technological experimentation. Public historians will have the opportunity to engage in outreach and innovative education and exploration of their collections. / History
360

Oriented 3D Printing

El Sahi, Simon Boliver January 2008 (has links)
<p> Ink-jet printing onto flat paper is a widely established process. In this thesis, we make extensions to printing on target surfaces such as metals and glass, using a 5-axis orientable head. Original artwork is created using CAD, and is sampled to create the ink jet point cloud. The target surface location is registered using a standard Coordinate Measuring Machine (CMM) 5-axis touch trigger probe. The probe is then replaced with the ink jet head and the printing process is carried out. Demonstration of the system is illustrated using flat metal and glass samples, as well as rapid prototyped 3-D plastic shapes.</p> / Thesis / Master of Applied Science (MASc)

Page generated in 0.0992 seconds