• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Double-gate nanotransistors in silicon-on-insulator : simulation of sub-20 nm FinFETs / Nano-transistores de porta dupla em silício sobre isolante simulação de FinFETs sub-20nm

Ferreira, Luiz Fernando January 2012 (has links)
Esta Tese apresenta os resultados da simulação do transporte eletrônico em três dimensões (3D) no nano dispositivo eletrônico conhecido como “SOI-FinFET”. Este dispositivo é um transistor MOS em tecnologia Silício sobre Isolante – “Silicon-on- Insulator”, SOI – com porta dupla e cujo canal e zonas de fonte e dreno são realizadas em uma estrutura nanométrica vertical de silício chamada de “finger” ou “fin”. Como introdução ao dispositivo em questão, é feita uma revisão básica sobre a tecnologia e transistores SOI e sobre MOSFETs de múltiplas portas. A implementação de um modelo tipo “charge-sheet” para o transistor SOI-MOSFET totalmente depletado e uma modelagem deste dispositivo em altas frequências também é apresentada. A geometria do “fin” é escalada para valores menores do que 100 nm, com uma espessura entre 10 e 20 nm. Um dos objetivos deste trabalho é a definição de parâmetros para o SOI-FinFET que o viabilizem para a tecnologia de 22 nm, com um comprimento efetivo de canal menor do que 20 nm. O transistor FinFET e uma estrutura básica simplificada para simulação numérica em 3D são descritos, sendo utilizados dados de tecnologias atuais de fabricação. São apresentados resultados de simulação numérica 3D (curvas ID-VG, ID-VD, etc.) evidenciando as principais características de funcionamento do FinFET. É analisada a influência da espessura e dopagem do “fin” e do comprimento físico do canal em parâmetros importantes como a tensão de limiar e a inclinação de sublimiar. São consideradas e analisadas duas possibilidades de dopagens da área ativa do “fin”: (1) o caso em que esta pode ser considerada não dopada, sendo baixíssima a probabilidade da presença de dopantes ativos, e (2) o caso de um alto número de dopantes ativos (> 10 é provável). Uma comparação entre dois simuladores numéricos 3D de dispositivos é realizada no intuito de explicitar diferenças entre modelos de simulação e características de descrição de estruturas 3D. São apresentadas e analisadas medidas em dispositivos FinFET experimentais. Dois métodos de extração de resistência série parasita são utilizados em FinFETs simulados e caracterizados experimentalmente. Para finalizar, são resumidas as principais conclusões deste trabalho e são propostos os trabalhos futuros e novas diretivas na pesquisa dos transistores FinFETs. / This thesis presents the results of 3D-numerical simulation of electron transport in double-gate SOI-FinFETs in the decanometer size range. A basic review on the SOI technology and multiple gates MOSFETs is presented. The implementation of a chargesheet model for the fully-depleted SOI-MOSFET and a high frequency modeling of this device are first presented for a planar device topology. The second part of this work deals with FinFETs, a non-planar topology. The geometry of the silicon nano-wire (or “fin”) in this thesis is scaled down well below 100 nm, with fin thickness in the range of 10 to 20 nm. This work addresses the parameters for a viable 22 nm CMOS node, with electrical effective channel lengths below 20 nm. The basic 3D structure of the FinFET transistor is described in detail, then it is simulated with various device structural parameters, and results of 3D-numerical simulation (ID-VG curves, ID-VD, etc.), showing the main features of operation of this device, are presented. The impacts of varying silicon fin thicknesses, physical channel lengths, and silicon fin doping concentration on both the average threshold voltage and the subthreshold slope are investigated. With respect to the doping concentration, the discrete and highly statistical nature of impurity presence in the active area of the nanometer-range fin is considered in two limiting cases: (1) the zero-doping or undoped case, for highly improbable presence of active dopants, and (2) the many-dopants case, or high number (> 10 are probable) of active dopants in the device channel. A comparison between two 3D-numerical device simulators is performed in order to clarify differences between simulation models and features of the description of 3D structures. A structure for SOIFinFETs is optimized, for the undoped fin, showing its applicability for devices with electrical effective channel lengths below 20 nm. SOI-FinFET measurements were performed on experimental devices, analyzed and compared to device simulation results. This thesis uses parasitic resistance extraction methods that are tested in FinFET simulations and measurements. Finally, the main conclusions of this work are summarized and the future work and new directions in the FinFETs research are proposed.
2

Double-gate nanotransistors in silicon-on-insulator : simulation of sub-20 nm FinFETs / Nano-transistores de porta dupla em silício sobre isolante simulação de FinFETs sub-20nm

Ferreira, Luiz Fernando January 2012 (has links)
Esta Tese apresenta os resultados da simulação do transporte eletrônico em três dimensões (3D) no nano dispositivo eletrônico conhecido como “SOI-FinFET”. Este dispositivo é um transistor MOS em tecnologia Silício sobre Isolante – “Silicon-on- Insulator”, SOI – com porta dupla e cujo canal e zonas de fonte e dreno são realizadas em uma estrutura nanométrica vertical de silício chamada de “finger” ou “fin”. Como introdução ao dispositivo em questão, é feita uma revisão básica sobre a tecnologia e transistores SOI e sobre MOSFETs de múltiplas portas. A implementação de um modelo tipo “charge-sheet” para o transistor SOI-MOSFET totalmente depletado e uma modelagem deste dispositivo em altas frequências também é apresentada. A geometria do “fin” é escalada para valores menores do que 100 nm, com uma espessura entre 10 e 20 nm. Um dos objetivos deste trabalho é a definição de parâmetros para o SOI-FinFET que o viabilizem para a tecnologia de 22 nm, com um comprimento efetivo de canal menor do que 20 nm. O transistor FinFET e uma estrutura básica simplificada para simulação numérica em 3D são descritos, sendo utilizados dados de tecnologias atuais de fabricação. São apresentados resultados de simulação numérica 3D (curvas ID-VG, ID-VD, etc.) evidenciando as principais características de funcionamento do FinFET. É analisada a influência da espessura e dopagem do “fin” e do comprimento físico do canal em parâmetros importantes como a tensão de limiar e a inclinação de sublimiar. São consideradas e analisadas duas possibilidades de dopagens da área ativa do “fin”: (1) o caso em que esta pode ser considerada não dopada, sendo baixíssima a probabilidade da presença de dopantes ativos, e (2) o caso de um alto número de dopantes ativos (> 10 é provável). Uma comparação entre dois simuladores numéricos 3D de dispositivos é realizada no intuito de explicitar diferenças entre modelos de simulação e características de descrição de estruturas 3D. São apresentadas e analisadas medidas em dispositivos FinFET experimentais. Dois métodos de extração de resistência série parasita são utilizados em FinFETs simulados e caracterizados experimentalmente. Para finalizar, são resumidas as principais conclusões deste trabalho e são propostos os trabalhos futuros e novas diretivas na pesquisa dos transistores FinFETs. / This thesis presents the results of 3D-numerical simulation of electron transport in double-gate SOI-FinFETs in the decanometer size range. A basic review on the SOI technology and multiple gates MOSFETs is presented. The implementation of a chargesheet model for the fully-depleted SOI-MOSFET and a high frequency modeling of this device are first presented for a planar device topology. The second part of this work deals with FinFETs, a non-planar topology. The geometry of the silicon nano-wire (or “fin”) in this thesis is scaled down well below 100 nm, with fin thickness in the range of 10 to 20 nm. This work addresses the parameters for a viable 22 nm CMOS node, with electrical effective channel lengths below 20 nm. The basic 3D structure of the FinFET transistor is described in detail, then it is simulated with various device structural parameters, and results of 3D-numerical simulation (ID-VG curves, ID-VD, etc.), showing the main features of operation of this device, are presented. The impacts of varying silicon fin thicknesses, physical channel lengths, and silicon fin doping concentration on both the average threshold voltage and the subthreshold slope are investigated. With respect to the doping concentration, the discrete and highly statistical nature of impurity presence in the active area of the nanometer-range fin is considered in two limiting cases: (1) the zero-doping or undoped case, for highly improbable presence of active dopants, and (2) the many-dopants case, or high number (> 10 are probable) of active dopants in the device channel. A comparison between two 3D-numerical device simulators is performed in order to clarify differences between simulation models and features of the description of 3D structures. A structure for SOIFinFETs is optimized, for the undoped fin, showing its applicability for devices with electrical effective channel lengths below 20 nm. SOI-FinFET measurements were performed on experimental devices, analyzed and compared to device simulation results. This thesis uses parasitic resistance extraction methods that are tested in FinFET simulations and measurements. Finally, the main conclusions of this work are summarized and the future work and new directions in the FinFETs research are proposed.
3

Double-gate nanotransistors in silicon-on-insulator : simulation of sub-20 nm FinFETs / Nano-transistores de porta dupla em silício sobre isolante simulação de FinFETs sub-20nm

Ferreira, Luiz Fernando January 2012 (has links)
Esta Tese apresenta os resultados da simulação do transporte eletrônico em três dimensões (3D) no nano dispositivo eletrônico conhecido como “SOI-FinFET”. Este dispositivo é um transistor MOS em tecnologia Silício sobre Isolante – “Silicon-on- Insulator”, SOI – com porta dupla e cujo canal e zonas de fonte e dreno são realizadas em uma estrutura nanométrica vertical de silício chamada de “finger” ou “fin”. Como introdução ao dispositivo em questão, é feita uma revisão básica sobre a tecnologia e transistores SOI e sobre MOSFETs de múltiplas portas. A implementação de um modelo tipo “charge-sheet” para o transistor SOI-MOSFET totalmente depletado e uma modelagem deste dispositivo em altas frequências também é apresentada. A geometria do “fin” é escalada para valores menores do que 100 nm, com uma espessura entre 10 e 20 nm. Um dos objetivos deste trabalho é a definição de parâmetros para o SOI-FinFET que o viabilizem para a tecnologia de 22 nm, com um comprimento efetivo de canal menor do que 20 nm. O transistor FinFET e uma estrutura básica simplificada para simulação numérica em 3D são descritos, sendo utilizados dados de tecnologias atuais de fabricação. São apresentados resultados de simulação numérica 3D (curvas ID-VG, ID-VD, etc.) evidenciando as principais características de funcionamento do FinFET. É analisada a influência da espessura e dopagem do “fin” e do comprimento físico do canal em parâmetros importantes como a tensão de limiar e a inclinação de sublimiar. São consideradas e analisadas duas possibilidades de dopagens da área ativa do “fin”: (1) o caso em que esta pode ser considerada não dopada, sendo baixíssima a probabilidade da presença de dopantes ativos, e (2) o caso de um alto número de dopantes ativos (> 10 é provável). Uma comparação entre dois simuladores numéricos 3D de dispositivos é realizada no intuito de explicitar diferenças entre modelos de simulação e características de descrição de estruturas 3D. São apresentadas e analisadas medidas em dispositivos FinFET experimentais. Dois métodos de extração de resistência série parasita são utilizados em FinFETs simulados e caracterizados experimentalmente. Para finalizar, são resumidas as principais conclusões deste trabalho e são propostos os trabalhos futuros e novas diretivas na pesquisa dos transistores FinFETs. / This thesis presents the results of 3D-numerical simulation of electron transport in double-gate SOI-FinFETs in the decanometer size range. A basic review on the SOI technology and multiple gates MOSFETs is presented. The implementation of a chargesheet model for the fully-depleted SOI-MOSFET and a high frequency modeling of this device are first presented for a planar device topology. The second part of this work deals with FinFETs, a non-planar topology. The geometry of the silicon nano-wire (or “fin”) in this thesis is scaled down well below 100 nm, with fin thickness in the range of 10 to 20 nm. This work addresses the parameters for a viable 22 nm CMOS node, with electrical effective channel lengths below 20 nm. The basic 3D structure of the FinFET transistor is described in detail, then it is simulated with various device structural parameters, and results of 3D-numerical simulation (ID-VG curves, ID-VD, etc.), showing the main features of operation of this device, are presented. The impacts of varying silicon fin thicknesses, physical channel lengths, and silicon fin doping concentration on both the average threshold voltage and the subthreshold slope are investigated. With respect to the doping concentration, the discrete and highly statistical nature of impurity presence in the active area of the nanometer-range fin is considered in two limiting cases: (1) the zero-doping or undoped case, for highly improbable presence of active dopants, and (2) the many-dopants case, or high number (> 10 are probable) of active dopants in the device channel. A comparison between two 3D-numerical device simulators is performed in order to clarify differences between simulation models and features of the description of 3D structures. A structure for SOIFinFETs is optimized, for the undoped fin, showing its applicability for devices with electrical effective channel lengths below 20 nm. SOI-FinFET measurements were performed on experimental devices, analyzed and compared to device simulation results. This thesis uses parasitic resistance extraction methods that are tested in FinFET simulations and measurements. Finally, the main conclusions of this work are summarized and the future work and new directions in the FinFETs research are proposed.

Page generated in 0.0431 seconds