1 |
An adaptive rational spectral method for differential equations with rapidly varying solutionsTee, Teik Wynn January 2006 (has links)
No description available.
|
2 |
Approximation on the complex sphereAlsaud, Huda Saleh January 2013 (has links)
The aim of this thesis is to study approximation of multivariate functions on the complex sphere by spherical harmonic polynomials. Spherical harmonics arise naturally in many theoretical and practical applications. We consider different aspects of the approximation by spherical harmonic which play an important role in a wide range of topics. We study approximation on the spheres by spherical polynomials from the geometric point of view. In particular, we study and develop a generating function of Jacobi polynomials and its special cases which are of geometric nature and give a new representation for the left hand side of a well-known formulae for generating functions for Jacobi polynomials (of integer indices) in terms of associated Legendre functions. This representation arises as a consequence of the interpretation of projective spaces as quotient spaces of complex spheres. In addition, we develop new elements of harmonic analysis on the complex sphere, and use these to establish Jackson's and Kolmogorov's inequalities. We apply these results to get order sharp estimates for m-term approximation. The results obtained are a synthesis of new results on classical orthogonal polynomials geometric properties of Euclidean spaces. As another aspect of approximation, we consider interpolation by radial basis functions. In particular, we study interpolation on the spheres and its error estimate. We show that the improved error of convergence in n dimensional real sphere, given in [7], remain true in the case of the complex sphere.
|
3 |
On orthogonal polynomials and related discrete integrable systemsSpicer, Paul Edward January 2006 (has links)
Orthogonal polynomials arise in many areas of mathematics and have been the subject of interest by many mathematicians. In recent years this interest has often arisen from outside the orthogonal polynomial community after their connection with integrable systems was found. This thesis is concerned with the different ways these connections can occur. We approach the problem from both perspectives, by looking for integrable structures in orthogonal polynomials and by using an integrable structure to relate different classes of orthogonal polynomials. In Chapter 2, we focus on certain classes of semi-classical orthogonal polynomials. For the classical orthogonal polynomials, the recurrence relations and differential equations are well known and easy to calculate explicitly using an orthogonality relation or generating function. However with semi-classical orthogonal polynomials, the recurrence coefficients can no longer be expressed in an explicit form, but instead obeys systems of non-linear difference equations. These systems are derived by deriving compatibility relations between the recurrence relation and the differential equation. The compatibility problem can be approached in two ways; the first is the direct approach using the orthogonality relation, while the second introduces the Laguerre method, which derives a differential system for semi-classical orthogonal polynomials. We consider some semiclassical Hermite and Laguerre weights using the Laguerre method, before applying both methods to a semi-classical Jacobi weight. While some of the systems derived will have been seen before, most of them (at least not to our knowledge) have not been acquired from this approach. Chapter 3 considers a singular integral transform that is related to the Gel’fand-Levitan equation, which provides the inverse part of the inverse scattering method (a solution method of integrable systems). These singular integral transforms constitute a dressing method between elementary (bare) solutions of an integrable system to more complicated solutions of the same system. In the context of this thesis we are interested in adapting this method to the case of polynomial solutions and study dressing transforms between different families of polynomials, in particular between certain classical orthogonal polynomials and their semi-classical deformations. In chapter 4, a new class of orthogonal polynomials are considered from a formal approach: a family of two-variable orthogonal polynomials related through an elliptic curve. The formal approach means we are interested in those relations that can be derived, without specifying a weight function. Thus, we are mainly concerned with recursive structures, particularly on their explicit derivation so that a series of elliptic polynomials can be constructed. Using generalized Sylvester identities, recurrence relations are derived and we consider the consistency of their coefficients and the compatibility between the two relations. Although the chapter focuses on the structure of the recurrence relations, some applications are also presented.
|
4 |
Near-best approximations by Chebyshev polynomials with applicationsMason, J. C. January 2004 (has links)
No description available.
|
5 |
Topics in orthogonal polynomialsGriffin, James Christopher January 2004 (has links)
No description available.
|
6 |
Περί των associated ορθογωνίων πολυωνύμωνΝικοπούλου, Μαρία 25 August 2010 (has links)
- / -
|
7 |
Ορθογώνια πολυώνυμα και σχετιζόμενα με αυτά προβλήματα της συναρτησιακής αναλύσεωςΠαναγόπουλος, Παναγιώτης 25 September 2009 (has links)
- / -
|
8 |
Αλγόριθμοι, ορθογώνια πολυώνυμα και διακριτά ολοκληρώσιμα συστήματα / Algorithms, orthogonal polynomials and descrete integrable systemsΚωνσταντόπουλος, Λεωνίδας 27 January 2009 (has links)
Στην εργασία αυτή παρουσιάζονται ορισμένοι αλγόριθμοι που συνδέονται με ορθογώνια πολυώνυμα και διακριτά ολοκληρώσιμα συστήματα. Οι κανόνες των αλγορίθμων αυτών είναι ρητού τύπου και συνδέουν τιμές που αφορούν την εξέλιξη των αλγορίθμων στην περίπτωση ιδιομορφιών. Αυτοί οι ιδιάζοντες κανόνες συνιστούν ένα από τα κοινά γνωρίσματα με ορισμένα ολοκληρώσιμα συστήματα στο πλέγμα ΖxZ συγκεκριμένα αυτό του "περιορισμού των ιδιομορφιών". Παρουσιάζονται οι κανόνες των αλγορίθμων ε, ρ και qd όπως και κανόνες που προκύπτουν από τους δύο πρώτους των οποίων η μορφή είναι αναλλοίωτη από μετασχηματισμούς Moebius. Η τελευταία αυτή ιδιότητα βοηθά στην εύρεση ιδιαζόντων κανόνων για τον περιορισμό των ιδιομορφιών. Ο αλγόριθμος qd συνδέεται τόσο με τα ορθογώνια πολυώνυμα στην πραγματική ευθεία όσο και με το διακριτού χρόνου πλέγμα Toda. Παρουσιάζεται η εύρεση του τριδιαγώνιου πίνακα Jacobi από τις σχέσεις που συνδέουν γειτονικές ακολουθίες ορθογωνίων πολυωνύμων. Ο πίνακας Jacobi εκφράζει την γραμμική αναδρομική σχέση τριών διαδοχικών ορθογωνίων πολυωνύμων. Ανάλογη κατασκευή για ορθογώνια πολυώνυμα στον μοναδιαίο κύκλο είναι περισσότερο πολύπλοκη και δεν καταλήγει πάντοτε σε πολυδιαγώνιο πίνακα. Παρουσιάζονται σχετικά πρόσφατα αποτελέσματα για τα ορθογώνια πολυώνυμα στον μοναδιαίο κύκλο και ο πενταδιαγώνιος πίνακας CMV. / In this paper are introduced some algorithms which are connected with orthogonal polynomials and descrete integrable systems. The rules of these algorithms are fraction type and combine the terms which are on the vertex of a rombus. We mainly introduce the rules which relate the evolution of the algorithms in the case of singular rules. These rules introduce one of the common characteristics with some integrable systems in the ZxZ lattice, in particular the "singularity confinement". We introduce the rules of the ε-, ρ- and qd-algorithms as well as the rules which follow from the first two whose type is unchangeable from Moebius transformations. This last property helps in finding proper rules for the singularity confinement. The qd-algorithm is connected not only with the orthogonal polynomials in the real line, but also with the discrete time Toda lattice. We also introduce the finding of the tri-diagonal Jacobi matrix from relations which combine adjacent sequences of orthogonal polynomials. The Jacobi matrix represent the three-term linear reccurence relation of orthogonal polynomials. Correspondent construction for orthogonal polynomials on the unit circle is much more complicated and doesn't conclude always in a poly-diagonal matrix. We introduce some recent results for orthogonal polynomials on the unit circle and the five-diagonal CMV matrix.
|
9 |
Κανόνας ολοκλήρωσης του Gauss και ορθογώνια πολυώνυμαΚωστόπουλος, Δημήτριος 24 October 2007 (has links)
Ανασκόπηση του κανόνα ολοκλήρωσης του gauss. Αναπαραστάσεις και εκτιμήσεις του υπολοίπου του. Τέλος περί της σύγκλισης του κανόνα ολοκλήρωσης. / A survey on gaussian quqdrature rules. Representation and estimates of its remainder. And about its convergence.
|
10 |
Partial sum process of orthogonal series as rough processYang, Danyu January 2012 (has links)
In this thesis, we investigate the pathwise regularity of partial sum process of general orthogonal series, and prove that the partial sum process is a geometric 2-rough process under the same condition as in Menshov-Rademacher Theorem. For Fourier series, the condition can be improved, and an equivalent condition on the limit function is identified.
|
Page generated in 0.0697 seconds