• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 15
  • 9
  • 7
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 203
  • 133
  • 116
  • 77
  • 52
  • 47
  • 30
  • 29
  • 29
  • 29
  • 26
  • 26
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

α-synuclein in Saccharomyces cerevisiae: model for aggregate clearance, cell survival and influence of autophagy / α-synuclein in Saccharomyces cerevisiae: model for aggregate clearance, cell survival and influence of autophagy

Petroi, Doris 20 April 2012 (has links)
No description available.
72

Transition of intrinsically unfolded α-synuclein into the fibrillar state characterized by NMR spectroscopy / Transition of intrinsically unfolded α-synuclein into the fibrillar state characterized by NMR spectroscopy

Cho, Min-Kyu 29 October 2008 (has links)
No description available.
73

Protein Structure Characterization by Solid-State NMR: Structural Comparison of Mouse and Human alpha-Synuclein Fibrils, Sparse 13C Labeling Schemes, and Stereospecific Assignment of Val and Leu Prochiral Methyl Groups

Lv, Guohua 28 March 2013 (has links)
No description available.
74

Alpha-synuclein aggregation: visualization by X-ray techniques and its modulation by iron

Carboni, Eleonora 19 October 2016 (has links)
No description available.
75

Amyloid-Beta Peptides Trigger Aggregation of Alpha-Synuclein In Vitro

Köppen, Janett, Schulze, Anja, Machner, Lisa, Wermann, Michael, Eichentopf, Rico, Guthardt, Max, Hähnel, Angelika, Klehm, Jessica, Kriegeskorte, Marie-Christin, Hartlage-Rübsamen, Maike, Morawski, Markus, von Hörsten, Stephan, Demuth, Hans-Ulrich, Roßner, Steffen, Schilling, Stephan 26 September 2024 (has links)
Alzheimer's disease (AD) and Parkinson's disease (PD), including dementia with Lewy bodies (DLB), account for the majority of dementia cases worldwide. Interestingly, a significant number of patients have clinical and neuropathological features of both AD and PD, i.e., the presence of amyloid deposits and Lewy bodies in the neocortex. The identification of α-synuclein peptides in amyloid plaques in DLB brain led to the hypothesis that both peptides mutually interact with each other to facilitate neurodegeneration. In this article, we report the influence of Aβ(1-42) and pGlu-Aβ(3-42) on the aggregation of α-synuclein in vitro. The aggregation of human recombinant α-synuclein was investigated using thioflavin-T fluorescence assay. Fibrils were investigated by means of antibody conjugated immunogold followed by transmission electron microscopy (TEM). Our data demonstrate a significantly increased aggregation propensity of α-synuclein in the presence of minor concentrations of Aβ(1-42) and pGlu-Aβ(3-42) for the first time, but without effect on toxicity on mouse primary neurons. The analysis of the composition of the fibrils by TEM combined with immunogold labeling of the peptides revealed an interaction of α-synuclein and Aβ in vitro, leading to an accelerated fibril formation. The analysis of kinetic data suggests that significantly enhanced nucleus formation accounts for this effect. Additionally, co-occurrence of α-synuclein and Aβ and pGlu-Aβ, respectively, under pathological conditions was confirmed in vivo by double immunofluorescent labelings in brains of aged transgenic mice with amyloid pathology. These observations imply a cross-talk of the amyloid peptides α-synuclein and Aβ species in neurodegeneration. Such effects might be responsible for the co-occurrence of Lewy bodies and plaques in many dementia cases.
76

Dopamine Induced Post-Translational Modifications of α-Synuclein and the Role of Arsenic in the Development of Parkinson's Disease and Other Synucleinopathies

Cholanians, Aram B. January 2016 (has links)
Synucleinopathies are a family of neurodegenerative diseases, with the distinctive pathological feature of Lewy bodies, which include Parkinson’s disease. Lewy bodies are intracellular inclusions filled with α-synuclein, a small neuronal protein with prion-like properties. The main function of α-synuclein is not fully understood, however, it plays a major role in disease progression. Dopamine interactions with α-synuclein have also been implicated in the progression of Parkinson’s disease. Dopamine crosslinks α-synuclein and causes generation of toxic oligomeric species of the protein. Little is known about dopamine-α-synuclein adducts, and one section of the current dissertation focuses on dopamine, levodopa, and α-synuclein interactions. Studies detailed herein demonstrated that lysine residues on α-synuclein have an essential role in the dopamine-induced oligomer formation. Evidence is also presented showing that removal of one of the reactive sites on dopamine by N-acetylcysteine and/or glutathione inhibits dopamine-induced oligomer formation, although the dopamine thiol-conjugates still bind to α-synuclein. In contrast, thiol-conjugates of the dopamine precursor levodopa, significantly increase α-synuclein oligomer formation. The data demonstrate the importance of the scavenging of dopamine and levodopa quinones by N-acetylcysteine and glutathione, and the subsequent changes in the interaction with α-synuclein and its oligomeric states. Environmental factors are key players in the development of synucleinopathies. Although arsenic pesticide exposure has been linked to elevated risk of Parkinson’s disease, there is a paucity of information on arsenic-induced pathological changes, which may be attributed to the onset of neurodegenerative processes. SH-SY5Y cells exposed to environmentally relevant levels of arsenic for 72 hours, develop α-synuclein oligomers and exhibitaugmented expression of stress markers. Thus, there is an increase in autophagy markers and other stress markers, including the accumulation and co-localization of LC3, major autophagy marker, and α-synuclein. Animals transiently exposed to arsenic through drinking water for 2 or 5 weeks, exhibited pathological features resembling synucleinopathies. Although animals were exposed at two-months of age and remained exposure free up to geriatric age (18 months), they still exhibited accumulation of α-synuclein and elevations in autophagy markers. The results demonstrated how even a short period of exposure to a toxicant can have detrimental neurological effects, which may contribute to the development of neurodegenerative disease years after exposure.
77

Studies of α-synuclein Oligomers-with Relevance to Lewy Body Disorders

Fagerqvist, Therese January 2013 (has links)
The protein alpha-synuclein (α-synuclein) accumulates in the brain in disorders such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). It is believed that the monomeric form of α-synuclein can adopt a partially folded structure and start to aggregate and form intermediately sized oligomers or protofibrils. The aggregation process can continue with the formation of insoluble fibrils, which are deposited as Lewy bodies. The oligomers/protofibrils have been shown to be toxic to neurons and are therefore believed to be involved in the pathogenesis of the actual diseases.       The overall aims of this thesis were to investigate the properties of α-synuclein oligomers and to generate and characterize antibodies against these species. In addition, the potential for immunotherapy of the α-synuclein oligomer-selective antibodies were evaluated in a transgenic mouse model with α-synuclein pathology. Stable, β-sheet rich α-synuclein oligomers were induced by incubation with either one of the reactive aldehydes 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). The oligomers exhibited distinct morphological properties, although both types were toxic when added to a neuroblastoma cell line. The seeding effects of ONE-induced oligomers were studied in vitro and in vivo. The oligomers induced seeding of monomeric α-synuclein in a fibrillization assay but not in a cell model or when injected intracerebrally in transgenic mice. It seemed, however, as if the oligomers affected α-synuclein turnover in the cell model. By immunizing mice with HNE-induced oligomers antibody producing hybridomas were generated. Three monoclonal antibodies were found to have strong selectivity for α-synuclein oligomers. These antibodies recognized Lewy body pathology in brains from patients with PD and DLB as well as inclusions in the brain from young α-synuclein transgenic mice, but did not bind to other amyloidogenic proteins. Finally, immunotherapy with one of the oligomer/protofibril selective antibodies resulted in lower levels of such α-synuclein species in the spinal cord of α-synuclein transgenic mice. To conclude, this thesis has focused on characterizing properties of α-synuclein oligomers. In particular, antibodies selectively targeting such neurotoxic forms were generated and evaluated for passive immunization in a transgenic mouse model. Such immunotherapy may represent a future treatment strategy against Lewy body disorders.
78

Investigation of amyloid fibrils forming proteins / Amiloidines fibriles formuojančių baltymų tyrimas

Povilonienė, Simona 07 June 2011 (has links)
Self-assembly of biomolecules into beta-sheet structures can be applied in the creation of nano-materials with novel electrical, optical, catalytical, or/and mechanical characteristics. This work was directed towards the construction of nano-derivatives based on amyloid fibrils forming proteins (Abeta40 peptide, a-Synuclein (a-Syn), equine lysozyme (EL)). Such nanostructures can be used to produce nanoscale functional systems. Herein, different mutant and hybrid proteins, which were able to form fibrillar structures, were constructed and the properties of fibrils were investigated. Designed cysteine mutants of Abeta40 and a-Syn can be modified through thiol group of cysteine. Herein, for the first time, it was demonstrated that a-Syncys141 fibrils could be modified with biotin and gold nanoparticles with neutravidin molecules. Hybrid proteins of Abeta40 or a-Syn and other non-amyloid proteins were designed on purpose to obtain fibrils with active functional non-amyloid proteins. Under appropriate conditions, these proteins aggregated into beta-sheet structures. Hybrid protein of streptavidin and Abeta40 formed a net-like fibrillar structure, and streptavidin was active. For the first time it was described the production of recombinant EL in E. coli. Moreover, active EL can form fibrils, which are similar to the fibrils formed by native EL. Constructed novel hybrids and mutants that are able to form amyloid fibrils, can be applied for the creation of functionalized nanodevices... [to full text] / Savitvarkės biomolekulės, gebančios formuoti beta-klosčių struktūras, gali būti pritaikomos nanomedžiagų su naujomis elektrinėmis, optinėmis, katalitinėmis ir/ar mechaninėmis savybėmis, kūrimui. Šiame darbe buvo siekiama kurti nanodarinius, grįstus amiloidines fibriles formuojančiais baltymais (Abeta40 peptidas, a-sinukleinas (a-Syn), kumelės pieno lizocimas (EL)), kurie būtų pagrindas nano dydžio funkcinių sistemų gamybai. Šiam tikslui buvo sukonstruoti mutantiniai ir hibridiniai baltymai bei tiriamos jų fibrilinių struktūrų savybės. Sukurti Abeta40 ir a-Syn cisteino mutantai, kurie gali būti modifikuojami per cisteino tiolinę grupę. Pirmą kartą buvo pademonstruotas a-Syncys141 baltymo fibrilių modifikavimas biotinu ir aukso nanodalelėmis su neutravidinu. Sukonstruoti hibridiniai baltymai, kurie sudaryti iš Abeta40 ar a-Syn bei GDH, streptavidino ir hidrofobino. Buvo tikimasi, kad tokie baltymai formuos fibrilines struktūras, o funkciniai baltymai bus aktyvūs. Esant atitinkamoms sąlygoms, šie baltymai agregavo suformuodami skirtingos morfologijos beta-klostines struktūras. Streptavidino ir Abeta40 hibridinis baltymas formavo fibrilinę struktūrą – tinklą, o streptavidinas buvo aktyvus. Šiame darbe pirmą kartą aprašoma rekombinantinio EL gamyba E. coli ląstelėse. Aktyvus EL gali formuoti panašias į natyvaus EL fibrilines struktūras. Sukonstruoti nauji hibridiniai ir mutantiniai baltymai, gebantys formuoti amiloidines fibriles, yra geras pagrindas, kuriant funkcionalizuotus... [toliau žr. visą tekstą]
79

Amiloidines fibriles formuojančių baltymų tyrimas / Investigation of amyloid fibrils forming proteins

Povilionienė, Simona 07 June 2011 (has links)
Savitvarkės biomolekulės, gebančios formuoti beta klosčių struktūras, gali būti pritaikomos nanomedžiagų su naujomis elektrinėmis, optinėmis, katalitinėmis ir/ar mechaninėmis savybėmis, kūrimui. Šiame darbe buvo siekiama kurti nanodarinius, grįstus amiloidines fibriles formuojančiais baltymais (Abeta40 peptidas, a-sinukleinas (a-Syn), kumelės pieno lizocimas (EL)), kurie būtų pagrindas nano dydžio funkcinių sistemų gamybai. Šiam tikslui buvo sukonstruoti mutantiniai ir hibridiniai baltymai bei tiriamos jų fibrilinių struktūrų savybės. Sukurti Abeta40 ir a-Syn cisteino mutantai, kurie gali būti modifikuojami per cisteino tiolinę grupę. Pirmą kartą buvo pademonstruotas a-Syncys141 baltymo fibrilių modifikavimas biotinu ir aukso nanodalelėmis su neutravidinu. Sukonstruoti hibridiniai baltymai, kurie sudaryti iš Abeta40 ar a-Syn bei GDH, streptavidino ir hidrofobino. Buvo tikimasi, kad tokie baltymai formuos fibrilines struktūras, o funkciniai baltymai bus aktyvūs. Esant atitinkamoms sąlygoms, šie baltymai agregavo suformuodami skirtingos morfologijos beta klostines struktūras. Streptavidino ir Abeta40 hibridinis baltymas formavo fibrilinę struktūrą – tinklą, o streptavidinas buvo aktyvus. Šiame darbe pirmą kartą aprašoma rekombinantinio EL gamyba E. coli ląstelėse. Aktyvus EL gali formuoti panašias į natyvaus EL fibrilines struktūras. Sukonstruoti nauji hibridiniai ir mutantiniai baltymai, gebantys formuoti amiloidines fibriles, yra geras pagrindas, kuriant funkcionalizuotus... [toliau žr. visą tekstą] / Self-assembly of biomolecules into beta-sheet structures can be applied in the creation of nano-materials with novel electrical, optical, catalytical, or/and mechanical characteristics. This work was directed towards the construction of nano-derivatives based on amyloid fibrils forming proteins (Abeta40 peptide, a-Synuclein (a-Syn), equine lysozyme (EL)). Such nanostructures can be used to produce nanoscale functional systems. Herein, different mutant and hybrid proteins, which were able to form fibrillar structures, were constructed and the properties of fibrils were investigated. Designed cysteine mutants of Abeta40 and a-Syn can be modified through thiol group of cysteine. Herein, for the first time, it was demonstrated that a-Syncys141 fibrils could be modified with biotin and gold nanoparticles with neutravidin molecules. Hybrid proteins of Abeta40 or a-Syn and other non-amyloid proteins were designed on purpose to obtain fibrils with active functional non-amyloid proteins. Under appropriate conditions, these proteins aggregated into beta-sheet structures. Hybrid protein of streptavidin and Abeta40 formed a net-like fibrillar structure, and streptavidin was active. For the first time it was described the production of recombinant EL in E. coli. Moreover, active EL can form fibrils, which are similar to the fibrils formed by native EL. Constructed novel hybrids and mutants that are able to form amyloid fibrils, can be applied for the creation of functionalized nanodevices... [to full text]
80

C-terminal tyrosine residue modifications modulate α-synuclein toxicity in yeast as unicellular model for Parkinson´s disease

Kleinknecht, Alexandra 30 June 2016 (has links)
No description available.

Page generated in 0.0304 seconds