• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 6
  • 1
  • 1
  • Tagged with
  • 51
  • 27
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La geometría de Descartes. IV centenario del nacimiento de Descartes

Velásquez López, Roberto 25 September 2017 (has links)
No description available.
2

Fibrados Holomórficos sobre blow-ups

Gasparim, Elizabeth 25 September 2017 (has links)
No description available.
3

Fenómenos de concentración en geometría y análisis no lineal

Subiabre Sánchez, Felipe Ignacio January 2014 (has links)
Ingeniero Civil Matemático / El trabajo presentado en esta memoria se sitúa en la interfaz entre el análisis y la geometría. El interés recae en el estudio de fenómenos de concentración para dos problemas "geométricos" no lineales: la existencia de hipersuperficies con r-curvatura constante en variedades Riemannianas, y una ecuación de Schrödinger no lineal. Esta memoria se puede dividir en dos partes principales. La primera está dedicada a explorar algunos resultados sobre concentración de familias de hipersuperficies de curvatura media constante (o en general curvatura r-media constante) con topología no trivial en variedades Riemannianas compactas. Se recuerda que la curvatura r-media de una hipersuperficie se define como la r-ésima función simétrica elemental de las curvaturas principales de la hipersuperficie. Se prueba que las técnicas desarrolladas en el trabajo de Mahmoudi, Mazzeo y Pacard se pueden extender para manejar el caso de curvatura r-media con r>=1. Este fenómeno de concentración se relaciona en general con un fenómeno de resonancia, que hace el análisis particularmente delicado y que también se encuentra en el estudio de una clase de ecuaciones elípticas no lineales que presentan concentración sobre conjuntos de dimensión mayor. En la segunda parte, correspondiente al paper presentado, se prueba un nuevo resultado sobre concentración en subvariedades para una ecuación de Schrödinger no lineal con potencial definido en una variedad Riemanniana suave y compacta M o el espacio Euclídeo R^n, resolviendo en completa generalidad una conjetura planteada por Ambrosetti, Malchiodi y Ni. Precisamente, se estudian soluciones positivas de la siguiente ecuación semilineal: $$\e^2\Delta_{\bar g} u - V(z)u + u^{p} =0 en M,$$ donde (M,g) es una variedad Riemanniana n-dimensional suave, compacta y sin borde o el espacio Euclídeo R^n, e es un parámetro positivo pequeño, p>1 y V es un potencial uniformemente positivo. Se prueba que dado k=1,...,n-1 y 1<p<(n+2-k)/(n-2-k), y suponiendo que K es una subvariedad k-dimensional suave y encajada de M, que es estacionaria y no degenerada con respecto al funcional $\int_K V^{\frac{p+1}{p-1}-\frac{n-k}{2}}dvol$, entonces existe una secuencia $e=\e_j \to 0$ y soluciones positivas asociadas $u=u_\e$ que concentran sobre K en el sentido de que decaen exponencialmente a cualquier distancia positiva a K. En particular este enfoque explora una conexión entre soluciones de esta ecuación de Schrödinger no lineal y subvariedades f-minimales en variedades con densidad.
4

Estudio de los sistemas cuánticos de dos estados desde el enfoque del álgebra geométrica

Amao Cutipa, Pedro 14 April 2016 (has links)
Se estudian los sistemas de dos niveles sin recurrir al espacio de Hilbert el cual es sustituido por el álgebra geométrica del espacio tridimensional (Espacio de Hilbert). En esta descripción los estados son codificados mediante elementos de un ideal izquierdo mínimo del álgebra par de G3, mientras los operadores son codificados mediante la combinación lineal de los vectores del álgebra impar de (Espacio de Hilbert). La dinámica que obedecen estos sistemas está gobernada por la ecuación de “Schrödinger real" ya que el número imaginario (i) es sustituido por el pseudoescalar de (Espacio de Hilbert). Introduciendo los idempotentes primitivos del álgebra geométrica, se generalizan las descripciones previas estando en completo acuerdo con la literatura convencional. Utilizando los axiomas del álgebra geométrica, se demuestra que las relaciones de conmutación canónica que obedecen los operadores de espín son consecuencia de la anticonmutatividad del producto geométrico. / Tesis
5

El cono de curvas asociado a una superficie racional. Poliedricidad.

Monserrat Delpalillo, Francisco José 23 July 2003 (has links)
A una superficie proyectiva X cualquiera se le pueden asociar una serie de conos convexos (cono de curvas, cono semiamplio y cono característico) que proporcionan información sobre la geometría de la superficie. En esta memoria se hace un estudio del cono de curvas asociado a una superficie proyectiva racional y regular. Más concretamente, se establecen condiciones que implican la poliedricidad de dicho cono. Estas condiciones son de dos tipos: unas que dependen de la existencia de determinados divisores efectivos, y otras que dependen únicamente de la obtención de la superficie a partir de una superficie relativamente minimal (que puede ser el plano proyectivo o una superficie de Hirzebruch). La poliedricidad del cono de curvas tiene importantes implicaciones geométricas, como el hecho de que el número de morfismos proyectivos con fibras conexas de X a otra variedad (contracciones) es finito, y también que el número de (-1)-curvas de X (es decir, de curvas no singulares, racionales y de auto-intersección ­1) es finito.
6

Propiedades algebraicas consideradas en la demostración del Teorema de los ceros de Hilbert

Verástegui Chuquillanqui, Teódulo 25 September 2017 (has links)
En esta exposición se presentan diversos conceptos y propiedades del álgebra conmutativa que están relacionados a conceptos básicos de la geometría algebraica. Un resultado importante, en donde se aprecian objetivamente estas relaciones, es el Teorema de los ceros de Hilbert, para cuya demostración se hace una estructuración de conceptos y propiedades referentes al anillo de polinomios con coeficientes en un campo dado, anillos noetherianos, extensiones algebraicas, etc. siguiendo las terminologías ·y notaciones dadas en [1]:
7

Introducción a la geometría proyectiva y geometría algebraica

Aroca, José Manuel 25 September 2017 (has links)
No description available.
8

Dos teoremas clásicos de la teoría de homotopía

Peña Bottcher, Alexander 25 September 2017 (has links)
En el presente artículo se demostrará la conmutatividad de los grupos de homotopía superior y que toda equivalencia de homotopía es una equivalencia débil. Estamos en la categoría Top, por lo tanto todo morfismo entre espacios será asumido una función continua y todo producto entre espacios tendrá la topología producto.
9

Aspectos dinámicos de los homeomorfismos y difeomorfismos del círculo

Suárez Navarro, Pedro Iván 07 July 2015 (has links)
En el presente trabajo se estudia la dinámica de los homeomorfismos de la circunferencia unitaria desde el punto de vista topológico. A cada homeomorfismo de tal circunferencia se le puede asociar un invariante topológico, conocido como el número de rotación de Poincaré. Se muestra que si f es un homeomorfismo que preserva orientación con número de rotación irracional, entonces f es semiconjugado a una rotación irracional. Cuando el difeomorfismo es de clase C2 se consigue incluso conjugación topológica. Además, se construye un difeomorfismo de la circunferencia unitaria no transitivo de clase C1 cuyo número de rotación es irracional. / Tesis
10

Aspectos geométricos de la teoría de curvas algebraicas

Egúsquiza Gallo, Mery Enny 04 October 2018 (has links)
En el presente trabajo se introduce el concepto de curva algebraica afín y se presenta el proceso de compactificación como curvas algebraicas proyectivas. El objetivo de la tesis es presentar una demostración geométrica de la fórmula “grado género” de una curva lisa. Este teorema relaciona el género topológico de una curva con su grado algebraico. / Tesis

Page generated in 0.0709 seconds