221 |
The aerobic energy cost of backstroke swimming in elite male athletes /Smith, Heather Karen. January 1987 (has links)
No description available.
|
222 |
Physiological response to sport-specific aerobic interval training in high school male basketball playersStone, Nick Unknown Date (has links)
It has been shown that a high level of aerobic fitness is important for athletes participating in intermittent (team) sports. The majority of studies investigating the effects of traditional and sport-specific aerobic interval exercise on physiological measures and performance have involved field-based team sports. In some instances the effectiveness of sport-specific aerobic training has been questioned. To date, no study has investigated the influence of a sport-specific training approach in the sport of basketball. Purpose: The aim of the present study was to evaluate the effectiveness of a basketball specific endurance circuit on improving measures of aerobic fitness. Methods: Ten male high school basketball players, age 16.4 ± 1.2 years, ranked by fitness level and randomly assigned to a training group (N = 6) or control group (N = 4) participated in the study. The sport-specific aerobic endurance training replaced the fitness component of regular training and was performed during the competitive season. The sport-specific training consisted of interval training using a basketball specific endurance circuit, four times 4 min at 90-95% HRpeak with a 3 min recovery at 60-70% HRpeak, twice per week for 6 weeks. During this time the control group performed regular basketball training. Results: For both the training and control groups the actual mean training intensity for total training duration were 77.4 ± 2.9% HRpeak and 74.1 ± 6.7% HRpeak, respectively. The actual mean training intensity during the work intervals in the training group was 84.1 ± 2.3% HRpeak. There were no clear differences between effects of the two training approaches for measures of maximal oxygen uptake (3.3%; 90% confidence limits, ± 19.3%), running economy (-3.3%; 90% confidence limits, ± 14.2%), repeated sprint ability (0.6%; 90% confidence limits, ± 5.7%) and anaerobic power maintenance during the repeated sprints (-13.7%; 90% confidence limits, ± 49.0%). However, a clear non-trivial effect on sub-maximal heart rate was observed (-7.3%; 90% confidence limits, ± 2.0%) suggesting a beneficial training effect after training. Some evidence for attenuation of speed (-1.8 to -2.8%; 90% confidence limits, ± 3.4 to 5.7%) and power (-1.7%; 90% confidence limits, ± 17.1%) was apparent. Conclusion: Although clear changes in sub-maximal HR responses were observed in the training group, the data in the present study suggests that a basketball specific endurance circuit has little effect on other laboratory and field-based measures of aerobic fitness. In fact, the basketball specific endurance circuit may lead to reduced improvements in jumping and sprinting performances. Further research is required to clarify the effect of aerobic training approaches on basketball-specific fitness and performance.
|
223 |
Effects of intermittent hypoxic exposure on physical performance in trained basketball playersDobson, Bryan Paul January 2009 (has links)
Strong evidence exists to support the use of a continuous (>8hr/day) hypoxic stimulus (either geographical altitude or simulated hypoxia) for enhancing the physical performance of endurance athletes. However, evidence supporting the use of acutely intermittent hypoxia (<1hr/day) for enhancing performance is less clear. The purpose of this study was to determine the effect of acutely intermittent hypoxic exposure on physiological and physical performance measures in team sport athletes. Using a single-blind controlled design, 14 trained basketball players (HYP = 7, CON = 7) were subjected to 15 days of intermittent hypoxia or normoxia. Each exposure was 37 minutes in duration (four cycles of 7min on, 3min off) and achieved using a nitrogen dilution device (Airo Ltd, Auckland, NZ). Prescribed peripheral oxygen saturation levels (SpO2) were maintained using an automatic biofeedback system and were progressively decreased from 86-89% on Day 1 to 75-78% on Day 15. A range of physiological measures and performance tests were conducted seven and two days before, and ten days after the intervention. The tests were: an incremental treadmill test to establish peak oxygen consumption ( peak) and running economy (RE), Yo-Yo Intermittent Recovery Test (YYIRT), and the Repeated High-Intensity Endurance Test (RHIET). Whole-blood samples were taken to assess a range of haematological measures. At 10 days post-intervention the HYP group, relative to the CON group, exhibited the following percent changes (±90% confidence limits, CL), and effect sizes (ES; ±90% CL); YYIRT running speedpeak (4.8; ± 1.6%, ES: 1.0 ± 0.4; benefit almost certain), RHIET total sprint time (-3.5; ± 1.6%; ES: -0.4 ± 0.2; benefit very likely), RHIET slowest sprint time (-5.0; ± 2.4%; ES: -0.5 ± 0.2; benefit very likely), soluble transferrin receptor (9.2; ± 10.1%; ES: 0.3 ± 0.3; benefit possible) running economy (11km.hr-1) (-9.0; ± 9.7%; ES: -0.7 ± 0.7; benefit likely, probable), and running economy (13km.hr-1) (-8.2; ± 6.9%; ES: -0.7 ± 0.5; benefit likely, probable). Changes to running economy (9km.hr-1), peak, maximum heart rate and lactate and all other blood measures were unclear. In conclusion, acutely intermittent hypoxia resulted in worthwhile changes in physical performance of trained basketball players in tests relevant to competition. However, the lack of clear change in physiological and haematological measures makes it difficult to determine the underlying mechanism for such enhancement.
|
224 |
Effects of intermittent hypoxic exposure on physical performance in trained basketball playersDobson, Bryan Paul January 2009 (has links)
Strong evidence exists to support the use of a continuous (>8hr/day) hypoxic stimulus (either geographical altitude or simulated hypoxia) for enhancing the physical performance of endurance athletes. However, evidence supporting the use of acutely intermittent hypoxia (<1hr/day) for enhancing performance is less clear. The purpose of this study was to determine the effect of acutely intermittent hypoxic exposure on physiological and physical performance measures in team sport athletes. Using a single-blind controlled design, 14 trained basketball players (HYP = 7, CON = 7) were subjected to 15 days of intermittent hypoxia or normoxia. Each exposure was 37 minutes in duration (four cycles of 7min on, 3min off) and achieved using a nitrogen dilution device (Airo Ltd, Auckland, NZ). Prescribed peripheral oxygen saturation levels (SpO2) were maintained using an automatic biofeedback system and were progressively decreased from 86-89% on Day 1 to 75-78% on Day 15. A range of physiological measures and performance tests were conducted seven and two days before, and ten days after the intervention. The tests were: an incremental treadmill test to establish peak oxygen consumption ( peak) and running economy (RE), Yo-Yo Intermittent Recovery Test (YYIRT), and the Repeated High-Intensity Endurance Test (RHIET). Whole-blood samples were taken to assess a range of haematological measures. At 10 days post-intervention the HYP group, relative to the CON group, exhibited the following percent changes (±90% confidence limits, CL), and effect sizes (ES; ±90% CL); YYIRT running speedpeak (4.8; ± 1.6%, ES: 1.0 ± 0.4; benefit almost certain), RHIET total sprint time (-3.5; ± 1.6%; ES: -0.4 ± 0.2; benefit very likely), RHIET slowest sprint time (-5.0; ± 2.4%; ES: -0.5 ± 0.2; benefit very likely), soluble transferrin receptor (9.2; ± 10.1%; ES: 0.3 ± 0.3; benefit possible) running economy (11km.hr-1) (-9.0; ± 9.7%; ES: -0.7 ± 0.7; benefit likely, probable), and running economy (13km.hr-1) (-8.2; ± 6.9%; ES: -0.7 ± 0.5; benefit likely, probable). Changes to running economy (9km.hr-1), peak, maximum heart rate and lactate and all other blood measures were unclear. In conclusion, acutely intermittent hypoxia resulted in worthwhile changes in physical performance of trained basketball players in tests relevant to competition. However, the lack of clear change in physiological and haematological measures makes it difficult to determine the underlying mechanism for such enhancement.
|
225 |
Effects of aerobic and resistance training on insulin sensitivity, muscle composition and dietary fat intakeFraser, Adam. January 2004 (has links)
Thesis (Ph.D.)--University of Wollongong, 2004. / Typescript. Bibliographical references: leaf 243-269.
|
226 |
The effect of an aerobic training program with two different training intensities on the energy intake, dietary composition and body composition of female subjects /Mueller, Brenda M., January 1992 (has links)
Report (M.S.)--Virginia Polytechnic Institute and State University. M.S. 1992. / Vita. Abstract. Includes bibliographical references (leaves 94-101). Also available via the Internet.
|
227 |
The physiological effects of a 12-week program of progressive low-impact aerobic dance on adults with mental retardationCluphf, David J. January 1999 (has links)
Thesis (Ed. D.)--West Virginia University, 1999. / Title from document title page. Document formatted into pages; contains vii, 131 p. : ill. Includes abstract. Includes bibliographical references (p. 108-117).
|
228 |
Degradation of monoaromatic compounds by an aerobic halotolerant alkaliphilic bacteriumAlbaugh, Catherine Elizabeth, January 2005 (has links) (PDF)
Thesis (M.S. in chemical engineering)--Washington State University, August 2005. / Includes bibliographical references.
|
229 |
The influence of aerobic exercise on double product break point in low to moderate risk adultsCampbell, Diane L. January 2009 (has links)
Thesis (M.S.)--Ball State University, 2009. / Title from PDF t.p. (viewed on Apr. 16, 2010). Includes bibliographical references.
|
230 |
Microstructural and ultrastructural response of myocardium to aerobic physical trainingPeterson, Richard Allen. January 1971 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1971. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliography.
|
Page generated in 0.0291 seconds