801 |
Endomorphism rings of hyperelliptic JacobiansKriel, Marelize 03 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2005. / The aim of this thesis is to study the unital subrings contained in associative algebras arising
as the endomorphism algebras of hyperelliptic Jacobians over finite fields.
In the first part we study associative algebras with special emphasis on maximal orders. In
the second part we introduce the theory of abelian varieties over finite fields and study the
ideal structures of their endomorphism rings.
Finally we specialize to hyperelliptic Jacobians and study their endomorphism rings.
|
802 |
Fredholm theory in general Banach algebrasHeymann, Retha 03 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This thesis is a study of a generalisation, due to R. Harte (see [9]), of Fredholm
theory in the context of bounded linear operators on Banach spaces
to a theory in a Banach algebra setting. A bounded linear operator T on a
Banach space X is Fredholm if it has closed range and the dimension of its
kernel as well as the dimension of the quotient space X/T(X) are finite. The
index of a Fredholm operator is the integer dim T−1(0)−dimX/T(X). Weyl
operators are those Fredholm operators of which the index is zero. Browder
operators are Fredholm operators with finite ascent and descent. Harte’s generalisation
is motivated by Atkinson’s theorem, according to which a bounded
linear operator on a Banach space is Fredholm if and only if its coset is invertible
in the Banach algebra L(X) /K(X), where L(X) is the Banach
algebra of bounded linear operators on X and K(X) the two-sided ideal of
compact linear operators in L(X). By Harte’s definition, an element a of a
Banach algebra A is Fredholm relative to a Banach algebra homomorphism
T : A ! B if Ta is invertible in B. Furthermore, an element of the form
a + b where a is invertible in A and b is in the kernel of T is called Weyl
relative to T and if ab = ba as well, the element is called Browder. Harte
consequently introduced spectra corresponding to the sets of Fredholm, Weyl
and Browder elements, respectively. He obtained several interesting inclusion
results of these sets and their spectra as well as some spectral mapping
and inclusion results. We also convey a related result due to Harte which
was obtained by using the exponential spectrum. We show what H. du T.
Mouton and H. Raubenheimer found when they considered two homomorphisms.
They also introduced Ruston and almost Ruston elements which led
to an interesting result related to work by B. Aupetit. Finally, we introduce
the notions of upper and lower semi-regularities – concepts due to V. M¨uller.
M¨uller obtained spectral inclusion results for spectra corresponding to upper
and lower semi-regularities. We could use them to recover certain spectral
mapping and inclusion results obtained earlier in the thesis, and some could
even be improved. / AFRIKAANSE OPSOMMING: Hierdie tesis is ‘n studie van ’n veralgemening deur R. Harte (sien [9]) van
Fredholm-teorie in die konteks van begrensde lineˆere operatore op Banachruimtes
tot ’n teorie in die konteks van Banach-algebras. ’n Begrensde lineˆere
operator T op ’n Banach-ruimte X is Fredholm as sy waardeversameling geslote
is en die dimensie van sy kern, sowel as di´e van die kwosi¨entruimte
X/T(X), eindig is. Die indeks van ’n Fredholm-operator is die heelgetal
dim T−1(0) − dimX/T(X). Weyl-operatore is daardie Fredholm-operatore
waarvan die indeks gelyk is aan nul. Fredholm-operatore met eindige styging
en daling word Browder-operatore genoem. Harte se veralgemening is gemotiveer
deur Atkinson se stelling, waarvolgens ’n begrensde lineˆere operator op
’n Banach-ruimte Fredholm is as en slegs as sy neweklas inverteerbaar is in die
Banach-algebra L(X) /K(X), waar L(X) die Banach-algebra van begrensde
lineˆere operatore op X is en K(X) die twee-sydige ideaal van kompakte
lineˆere operatore in L(X) is. Volgens Harte se definisie is ’n element a van
’n Banach-algebra A Fredholm relatief tot ’n Banach-algebrahomomorfisme
T : A ! B as Ta inverteerbaar is in B. Verder word ’n Weyl-element relatief
tot ’n Banach-algebrahomomorfisme T : A ! B gedefinieer as ’n element
met die vorm a + b, waar a inverteerbaar in A is en b in die kern van T is.
As ab = ba met a en b soos in die definisie van ’n Weyl-element, dan word
die element Browder relatief tot T genoem. Harte het vervolgens spektra
gedefinieer in ooreenstemming met die versamelings van Fredholm-, Weylen
Browder-elemente, onderskeidelik. Hy het heelparty interessante resultate
met betrekking tot insluitings van die verskillende versamelings en hulle
spektra verkry, asook ’n paar spektrale-afbeeldingsresultate en spektraleinsluitingsresultate.
Ons dra ook ’n verwante resultaat te danke aan Harte
oor, wat verkry is deur van die eksponensi¨ele-spektrum gebruik te maak.
Ons wys wat H. du T. Mouton en H. Raubenheimer verkry het deur twee
homomorfismes gelyktydig te beskou. Hulle het ook Ruston- en byna Rustonelemente
gedefinieer, wat tot ’n interessante resultaat, verwant aan werk van
B. Aupetit, gelei het. Ten slotte stel ons nog twee begrippe bekend, naamlik
’n onder-semi-regulariteit en ’n bo-semi-regulariteit – konsepte te danke
aan V. M¨uller. M¨uller het spektrale-insluitingsresultate verkry vir spektra
wat ooreenstem met bo- en onder-semi-regulariteite. Ons kon dit gebruik
om sekere spektrale-afbeeldingsresultate en spektrale-insluitingsresultate wat
vroe¨er in hierdie tesis verkry is, te herwin, en sommige kon selfs verbeter
word.
|
803 |
Álgebras de Lie e aplicações à sistemas alternantesNascimento, Rildo Pinheiro do [UNESP] 05 September 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:08Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-09-05Bitstream added on 2014-06-13T20:16:05Z : No. of bitstreams: 1
nascimento_rp_me_sjrp.pdf: 368298 bytes, checksum: d1ffd79129c70e6a0b4236136ff5e58e (MD5) / Neste trabalho é feito um estudo aprofundado da estabilidade de sistemas alternantes, principalmente via teoria de Lie. Inicialmente são apresentados os principais conceitos básicos da álgebra de Lie, necessários para o estudo dos critérios de estabilidade dos sistemas alternantes. Depois são discutidos critérios de estabilidade para sistemas alternantes. É feita a exposição da demonstração de que para todo sistema linear da forma ? x = Apx p = 1, 2,...,N, com as matrizes Ap assintóticamente estáveis e comutativas duas a duas, existe uma função de Lyapunov quadrática comum. Uma condição suficiente para estabilidade assintótica de um sistema linear alternante é apresentada em termos da álgebra de Lie gerada por uma família infinita de matrizes. A saber, se esta álgebra de Lie é solúvel, então o sistema alternante é estável para uma mudança arbitrária de sinal. Em seguida são estudadas condições mais fracas. Supondo que a álgebra de Lie não é solúvel, mas é decomponível na soma de um ideal solúvel e uma subálgebra com grupo de Lie compacto, então o sistema alternante é globalmente exponencialmente uniformemente estável. Entretanto, se o grupo de Lie não for compacto, verifica-se que é possível gerar uma família finita de matrizes estáveis tais que o correspondente sistema linear alternante não é estável. Finalmente, os resultados correspondentes de estabilidade local para sistemas alternantes não lineares são apresentados. / In this work it is undertaken a deep study of stability for switched systems, mainly via Lie algebraic Theory. At first, the basic concepts and results from Lie algebra necessary for the study of stability of switched systems are presented. Criteria for stability are discussed. It is also done an exposition of the proof that all linear systems ? x = Apx, p = 1, 2, ...,N, with stable and pairwisely commutative matrices Ap, have common quadratic Lyapounov functions. A sufficient condition for asymptotic stability of switched linear systems is presented in term of the Lie algebra generated by a family infinite matrices. That is, if this Lie algebra is solvable, then the switched systems are stable for an arbitrary change of sinal. Next weaker conditions are studied. If the Lie algebra is decomposable into two subalgebras in which one is a solvable ideal and the other has a compact Lie group, then the switched systems are globally exponentially uniformly stable. However, if the Lie group is not compact, it is also possible to generate a finite family of stable matrices such that the corresponding switched linear systems are not stable. Finally, corresponding local stability results are presented for nonlinear systems.
|
804 |
Álgebras não associativas octoniônicas e relações extensivas do tipo De MoivrePendeza, Cristiane Aparecida [UNESP] 20 February 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:08Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-02-20Bitstream added on 2014-06-13T20:08:17Z : No. of bitstreams: 1
pendeza_ca_me_sjrp.pdf: 785980 bytes, checksum: 9924600af5c466ce74dbb2b6ceddee2e (MD5) / O presente trabalho tem por objetivo apresentar uma anþalise dos octônios, bem como da álgebra octoniônica 8-dimensional, que, apesar de não associativos, são descritos para um número de estruturas excepcionais como por exemplo os grupos de Lie excepcionais e suas respectivas álgebras, favorecendo assim o entendimento das rotações de espaços euclidianos de dimensão inferior. Por essa razão se tornam fascinantes em aplicações nas diversas áreas da Matemática e Física. Apresenta-se também uma aplicação dos octônios na analogia da relação clássica de Moivre, e presentes conexões entre funções octoniônicas transcendentais e operadores diferencias da teoria de Fueter. / The objective of this work is to present an analysis of the octonions, as well as the octonionic algebras 8-dimensional. Although they aren't associative, they are described by a number of structures, such as the Lie's exceptional groups and its respective algebras, which help the understanding of rotations of Euclidian spaces of lower dimension. Because of that they are fascinating in applications in several areas of Mathematics and Physics. This work also presents application of octonions in the analog of The Classical De Moivre Relation and presents connections between octonionic transcendent functions and di erential operators of Fueter Theory.
|
805 |
Aplicações completamente positivas em algebras de matrizes e o teorema de BirkhoffDemeneghi, Paulinho January 2014 (has links)
Descrevemos propriedades espectrais de aplicações positivas em C*- álgebras de dimensão finita, seguindo o trabalho clássico de Evans e Hoegh-Krohn [EH-K]. Conjuntamente, estudamos os pontos extremais do conjunto das aplicações duplamente estocásticas completamente positivas sobre Mn(C), seguindo Landau e Streater [LS]. / We describe spectral properties of positive maps over nite dimensional C* -algebras, following the classical work of Evans and H egh-Krohn [EH-K]. We also study the extremal points of the set of completely positive doubly-stochastic maps over Mn(C), following Landau and Streater [LS].
|
806 |
Extensões de Ore e álgebras de Hopf fracasSantos, Ricardo Leite dos January 2017 (has links)
Extensões de Ore são anéis de polinômios, denotados por R[x o &], nos quais a variável x e os elementos de R não comutam necessariamente. Algebras de Hopf fracas são algebras que tamb em são coálgebras e satisfazem um conjunto de axiomas de compatibilidade entre essas estruturas. Neste trabalho investigamos extensões de Ore cujo anel base e uma algebra de Hopf fraca. Mais especi camente, dada uma algebra de Hopf fraca R, estudamos sob quais condições R[x o &] e uma algebra de Hopf fraca com uma estrutura que estende a estrutura de R. Sob certas hipóteses, obtemos condições necessárias e su cientes para que a extensão de Ore seja uma álgebra de Hopf fraca, obtendo assim um resultado que generaliza um teorema de Panov para o contexto de algebras de Hopf fracas. / Ore extensions are polynomial rings, denoted by R[x o &], in which the variable x and the elements of R do not commute necessarily. Weak Hopf algebras are algebras which are also coalgebras and satisfy a set of axioms of compatibility betweem these structures. In this work, we investigate Ore extensions whose base ring is a weak Hopf algebra. More speci cally, if R is a weak Hopf algebra then we study under what conditions R[xo &] is a weak Hopf algebra extending the structure of R. Under certain hypotheses, we obtain necessary and su cient conditions for an Ore extension to be a weak Hopf algebra, obtaining a result that generalizes a Panov's theorem to the setting of weak Hopf algebras.
|
807 |
Esboço de curvas no ensino superiorLuiz, Learcino dos Santos 25 October 2012 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Educação Científica e Tecnológica, Florianópolis, 2010 / Made available in DSpace on 2012-10-25T03:36:42Z (GMT). No. of bitstreams: 0 / O esboço de curvas é um conteúdo de grande importância para a compreensão dos conceitos do Cálculo. Baseado na Teoria dos Registros de Representações Semióticas desenvolvida por Duval, propomos neste trabalho uma nova abordagem deste conteúdo. Duval apontou em seus trabalhos a possibilidade de se trabalhar o esboço de curvas através da interpretação global de propriedades figurais, que é o procedimento onde o conjunto traçado/eixo forma uma imagem que representa um objeto descrito por uma expressão analítica que permite que se identifiquem as modificações possíveis conjuntamente na imagem e na expressão. No entanto, para o ensino universitário, devido à maior complexidade e variedade das funções tratadas, as conversões simultâneas entre as representações das funções nos dois sentidos se tornam impraticáveis. Neste trabalho, apresentamos a aplicação de uma sequência didática em uma turma de Cálculo I, que nos aponta uma saída para este impasse que é o uso de um conjunto de unidades básicas simbólicas associadas a um conjunto de unidades básicas gráficas, criadas por Moretti, que tem como objetivo intermediar as conversões em ambos os sentidos das representações associado ao uso de tecnologias. / The sketch of curves is a content of great importance for the understanding of the concepts of calculus. Based in the Theory of the Registers of Representations Semiotics developed for Duval, we propose in this work, a new approach of this content. Duval pointed out in his work on the possibility of working outline curves through the interpretation of global figural properties, that is the procedure where the set traced / axis form an image that represents an object described by an analytical expression which allows to identify possible modifications together the image and expression which allows to identify possible modifications together the image and expression. However, for university education, due to greater complexity and variety of the treated functions, the simultaneous conversions between the representations of functions in the two directions if become impracticable. In this work, we present the application of a didactic sequence in a class of Calculus I, that shows an exit for this impasse that is the use of a set of basic symbolic units associates to a set of graphical basic units, created by Moretti, that has as objective to intermediate the conversions in both the directions of the representations associated to the use of technologies.
|
808 |
Expoentes de PI-Álgebras associativas. / Exponent of PI-associative algebras.FRANÇA, Antonio Marcos Duarte. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T18:04:07Z
No. of bitstreams: 1
ANTONIO MARCOS DUARTE DE FRANÇA - DISSERTAÇÃO 2014..pdf: 1066992 bytes, checksum: 6e270db1611e61d65507f5f99e9bd161 (MD5) / Made available in DSpace on 2018-08-09T18:04:07Z (GMT). No. of bitstreams: 1
ANTONIO MARCOS DUARTE DE FRANÇA - DISSERTAÇÃO 2014..pdf: 1066992 bytes, checksum: 6e270db1611e61d65507f5f99e9bd161 (MD5)
Previous issue date: 2014-10 / Capes / Para ler o resumo deste trabalho recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis trascreve-los aqui. / To read the summary of this work we recommend downloading the file, since it has formulas and mathematical characters that were not possible to transcribe them here.
|
809 |
The abstract structure of quantum algorithmsZeng, William J. January 2015 (has links)
Quantum information brings together theories of physics and computer science. This synthesis challenges the basic intuitions of both fields. In this thesis, we show that adopting a unified and general language for process theories advances foundations and practical applications of quantum information. Our first set of results analyze quantum algorithms with a process theoretic structure. We contribute new constructions of the Fourier transform and Pontryagin duality in dagger symmetric monoidal categories. We then use this setting to study generalized unitary oracles and give a new quantum blackbox algorithm for the identification of group homomorphisms, solving the GROUPHOMID problem. In the remaining section, we construct a novel model of quantum blackbox algorithms in non-deterministic classical computation. Our second set of results concerns quantum foundations. We complete work begun by Coecke et al., definitively connecting the Mermin non-locality of a process theory with a simple algebraic condition on that theory's phase groups. This result allows us to offer new experimental tests for Mermin non-locality and new protocols for quantum secret sharing. In our final chapter, we exploit the shared process theoretic structure of quantum information and distributional compositional linguistics. We propose a quantum algorithm adapted from Weibe et al. to classify sentences by meaning. The clarity of the process theoretic setting allows us to recover a speedup that is lost in the naive application of the algorithm. The main mathematical tools used in this thesis are group theory (esp. Fourier theory on finite groups), monoidal category theory, and categorical algebra.
|
810 |
Crossed product C*-algebras by finite group actions with a generalized tracial Rokhlin propertyArchey, Dawn Elizabeth, 1979- 06 1900 (has links)
viii, 107 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This dissertation consists of two related parts. In the first portion we use the tracial Rokhlin property for actions of a finite group G on stably finite simple unital C *-algebras containing enough projections. The main results of this part of the dissertation are as follows. Let A be a stably finite simple unital C *-algebra and suppose a is an action of a finite group G with the tracial Rokhlin property. Suppose A has real rank zero, stable rank one, and suppose the order on projections over A is determined by traces. Then the crossed product algebra C * ( G, A, à à ±) also has these three properties.
In the second portion of the dissertation we introduce an analogue of the tracial Rokhlin property for C *-algebras which may not have any nontrivial projections called the projection free tracial Rokhlin property . Using this we show that under certain conditions if A is an infinite dimensional simple unital C *-algebra with stable rank one and à à ± is an action of a finite group G with the projection free tracial Rokhlin property, then C * ( G, A, à à ±) also has stable rank one. / Adviser: Phillips, N. Christopher
|
Page generated in 0.0358 seconds