1 |
Generic Simulation Model Development of Hydraulic Axial Piston MachinesKayani, Omer Khaleeq, Sohaib, Muhammad January 2012 (has links)
This master thesis presents a novel methodology for the development of simulation models for hydraulic pumps and motors. In this work, a generic simulation model capable of representing multiple axial piston machines is presented, implemented and validated. Validation of the developed generic simulation model is done by comparing the results from the simulation model with experimental measurements. The development of the generic model is done using AMESim. Today simulation models are an integral part of any development process concerning hydraulic machines. An improved methodology for developing these simulation models will affect both the development cost and time in a positive manner. Traditionally, specific simulation models dedicated to a certain pump or motor are created. This implies that a complete rethinking of the model structure has to be done when modeling a new pump or motor. Therefore when dealing with a large number of pumps and motors, this traditional way of model development could lead to large development time and cost. This thesis work presents a unique way of simulation model development where a single model could represent multiple pumps and motors resulting in lower development time and cost. An automated routine for simulation model creation is developed and implemented. This routine uses the generic simulation model as a template to automatically create simulation models requested by the user. For this purpose a user interface has been created through the use of Visual Basic scripting. This interface communicates with the generic simulation model allowing the user to either change it parametrically or completely transform it into another pump or motor. To determine the level of accuracy offered by the generic simulation model, simulation results are compared with experimental data. Moreover, an optimization routine to automatically fine tune the simulation model is also presented.
|
Page generated in 0.0262 seconds