• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

5SGraph: A Modeling Tool for Digital Libraries

Zhu, Qinwei 02 December 2002 (has links)
The high demand for building digital libraries by non-experts requires a simplified modeling process and rapid generation of digital libraries. To enable rapid generation, digital libraries should be modeled with descriptive languages. A visual modeling tool would be helpful to non-experts so they may model a digital library without knowing the theoretical foundations and the syntactical details of the descriptive language. In this thesis, we describe the design and implementation of a domain-specific visual modeling tool, 5SGraph, aimed at modeling digital libraries. 5SGraph is based on a metamodel that describes digital libraries using the 5S theory. The output from 5SGraph is a digital library model that is an instance of the metamodel, expressed in the 5S description language (5SL). 5SGraph presents the metamodel in a structured toolbox, and provides a top-down visual building environment for designers. The visual proximity of the metamodel and instance model facilitates requirements gathering and simplifies the modeling process. Furthermore, 5SGraph maintains semantic constraints specified by the 5S metamodel and enforces these constraints over the instance model to ensure semantic consistency and correctness. 5SGraph enables component reuse to reduce the time and efforts of designers. The results from a pilot usability test confirm the usefulness of 5SGraph. / Master of Science
2

Streams, Structures, Spaces,Scenarios, and Societies (5S): A Formal Digital Library Framework and Its Applications

Gonçcalves, Marcos André 08 December 2004 (has links)
Digital libraries (DLs) are complex information systems and therefore demand formal foundations lest development efforts diverge and interoperability suffers. In this dissertation, we propose the fundamental abstractions of Streams, Structures, Spaces, Scenarios, and Societies (5S), which allow us to define digital libraries rigorously and usefully. Streams are sequences of arbitrary items used to describe both static and dynamic (e.g., video) content. Structures can be viewed as labeled directed graphs, which impose organization. Spaces are sets with operations that obey certain constraints. Scenarios consist of sequences of events or actions that modify states of a computation in order to accomplish a functional requirement. Societies are sets of entities and activities, and the relationships among them. Together these abstractions provide a formal foundation to define, relate, and unify concepts -- among others, of digital objects, metadata, collections, and services -- required to formalize and elucidate ``digital libraries''. A digital library theory based on 5S is defined by proposing a formal ontology that defines the fundamental concepts, relationships, and axiomatic rules that govern the DL domain. The ontology is an axiomatic, formal treatment of DLs, which distinguishes it from other approaches that informally define a number of architectural invariants. The applicability, versatility, and unifying power of the 5S theory are demonstrated through its use in a number of distinct applications including: 1) building and interpreting a DL taxonomy; 2) informal and formal analysis of case studies of digital libraries (NDLTD and OAI); 3)utilization as a formal basis for a DL description language, digital library visualization and generation tools, and a log format specific for DLs; and 4) defining a quality model for DLs. / Ph. D.

Page generated in 0.0359 seconds