• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 714
  • 176
  • 133
  • 90
  • 33
  • 22
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 15
  • 15
  • 8
  • Tagged with
  • 1417
  • 290
  • 270
  • 170
  • 128
  • 111
  • 108
  • 92
  • 80
  • 79
  • 78
  • 74
  • 73
  • 72
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1011

Fundamental Properties of Functional Magnetic Materials

Wikberg, Magnus January 2010 (has links)
Magnetic properties of powders, thin films and single crystals have been investigated using magnetometry methods. This thesis provides analysis and conclusions that are supported by the results obtained from spectroscopic and diffraction measurements as well as from theoretical calculations. First, the magnetic behavior of transition metal (TM) doped ZnO with respect to doping, growth conditions and post annealing has been studied. Our findings indicate that the magnetic behavior stems from small clusters or precipitates of the dopant, with ferromagnetic or antiferromagnetic interactions. At the lowest dopant concentrations, the estimated cluster sizes are too small for high resolution imaging. Still, the clusters may be sufficiently large to generate a finite spontaneous magnetization even at room temperature and could easily be misinterpreted as an intrinsic ferromagnetic state of the TM:ZnO compound. Second, influence of lattice strain on both magnetic moment and anisotropy has been investigated for epitaxial MnAs thin films grown on GaAs substrates. The obtained magnetic moments and anisotropy values are higher than for bulk MnAs. The enhanced values are caused by highly strained local areas that have a stronger dependence on the in-plane axis strain than out-of plane axis strain. Finally, spin glass behavior in Li-layered oxides, used for battery applications, and a double perovskite material has been investigated. For both Li(NiCoMn)O2 and (Sr,La)MnWO6, a mixed-valence of one of the transition metal ions creates competing ferromagnetic and antiferromagnetic interactions resulting in a low temperature three-dimensional (3D) spin glass state. Additionally, Li(NiCoMn)O2 with large cationic mixing exhibits a percolating ferrimagnetic spin order in the high temperature region and coexists with a two-dimensional (2D) frustrated spin state in the mid temperature region. This is one of the rare observations where a dimensional crossover from 2D to 3D spin frustration appears in a reentrant material. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 720
1012

Gefügekontrollierte Verwitterung natürlicher und konservierter Marmore / Fabric controlled weathering of natural and consolidated marbles

Rüdrich, Jörg Michael 03 June 2003 (has links)
No description available.
1013

Marble decay caused by thermal expansion: microstructure-based mathematical and physical modeling

Shushakova, Victoria 19 April 2013 (has links)
No description available.
1014

Investigating the Influence of Mechanical anisotropy on the Fracturing Behaviour of Brittle Clay Shales with Application to Deep Geological Repositories

Lisjak Bradley, Andrea 10 January 2014 (has links)
Clay shales are currently being assessed as possible host rock formations for the deep geological disposal of radioactive waste. However, one main concern is that the favourable long-term isolation properties of the intact rock mass could be negatively affected by the formation of an excavation damaged zone (EDZ) around the underground openings. This thesis investigated the deformation and failure process of a clay shale, namely Opalinus Clay, with particular focus on the influence of anisotropy on the short-term response of circular tunnels. To achieve this goal, a hybrid continuum-discontinuum numerical approach was used in combination with new field measurements from the Mont Terri underground research laboratory. The response of Opalinus Clay during the excavation of a full-scale emplacement (FE) test tunnel was characterized by geodetic monitoring of wall displacements, radial extensometers and longitudinal inclinometers. The deformation measurements indicated strong directionality induced by the combined effect of in situ stress field and presence of bedding planes striking parallel to the tunnel axis, with the most severe deformation occurring in the direction approximately perpendicular to the material layering. Computer simulations were conducted using a newly-extended combined finite-discrete element method (FEM/DEM), a numerical technique which allows the explicit simulation of brittle fracturing and associated seismicity. The numerical experimentation firstly focused on the laboratory-scale analysis of failure processes (e.g., acoustic activity) in brittle rocks, and on the role of strength and modulus anisotropy in the failure behaviour of Opalinus Clay in tension and compression. The fracturing behaviour of unsupported circular excavations in laminated rock masses was then analyzed under different in situ stress conditions. Lastly, the modelling methodology was applied to the aforementioned FE tunnel to obtain original insights into the possible EDZ formation process around emplacement tunnels for nuclear waste. The calibrated numerical model suggested delamination along bedding planes and subsequent extensional fracturing as key mechanisms of the damage process potentially leading to buckling and spalling phenomena. Overall, the research findings may have a potential impact on the constructability and support design of an underground repository as well as implications for its long-term safety assessment procedure.
1015

WMAP 5-year data: Let’s test Inflation

Halpern, Mark 18 April 2008 (has links)
We have released maps and data for five years of observation of the cosmic microwave background with the Wilkinson Microwave Anisotropy Probe (WMAP) and I will review the main results in this talk. A simple 6 parameter cosmological model continues to be an excellent fit to the CMB data and to our data in conjunction with other astrophysical measurements. In particular a running spectral index is not supported by the data, and constraints that the Universe is spatially flat have increased in precision. Increased sensitivity and improvements in our understanding of the instrumental beam shape have allowed us to measure for the first time a cosmic neutrino background. Neutrinos de-coupled from other matter earlier than photons did. While they are expected to have a 2 Kelvin thermal distribution today, they comprised 10% of the energy density of the Universe at the epoch of photon de-coupling. The data also allow tighter constraints on the shape of the inflationary potential via the amplitude of a gravitational wave background new constraints on features of cosmic axions. Recorded at TRIUMF on Thursday April 17, 2008.
1016

A Solid-state NMR Study of Tin and Phosphorus Containing Compounds

Jamieson, Rebecca 22 August 2013 (has links)
Various compounds were studied with solid-state 119Sn and 31P NMR spectroscopy and quantum chemical calculations. Connections were made between the shielding tensors and the geometric and electronic structures of the molecules. First, the 119Sn chemical shielding anisotropy of various para substituted tetraaryl tin compounds was shown to be dependent on the tilt angle of the phenyl rings. Tetrakis(o-tolyl) tin did not have the shielding anisotropy predicted by the tilt angle of the rings. It was suggested that ortho substitution distorts the structures of the phenyl rings causing the discrepancy. Analysis of the solid-state 31P NMR spectra of triphenylphosphorane ylides, Ph3P=CHC(O)R, determined that increasing the electron-donating effects of the R group decreased the δ33 component. Theoretical calculations showed that the component lay along the ylidic bond and was dependent on the difference in phosphorus-carbon bond lengths between the phenyl and ylidic bonds. Another study concerned the solid-state 31P NMR of the series of triphenylphosphine derivatives, PPh3-x(o-tolyl)x where x = 0 to 3. The addition of ortho methyl groups changed the position of the δ11 component which could be the result of the change in energy gap between the lone pair (HOMO) and σ* anti-bonding (LUMO). The solid-state 31P NMR spectra of deuterated piperazinium phosphonate and phosphonic acid were influenced by the shielding, dipolar and spin-spin interactions, as well as, second order quadrupolar effects. The spectrum of deuterated piperazinium phosphonate had a chemical shielding anisotropy of 130 ppm, an effective dipolar coupling of 2500 kHz and a one-bond phosphorus-deuterium J coupling of 90 Hz. The phosphorus-deuterium bond length was predicted to be 1.44(2) Å. A deuterium quadrupolar coupling constant of 104 kHz was obtained from the CP/MAS 2H spectrum. The non-axial symmetry of phosphonic acid complicated the analysis of the 31P spectrum. Phosphorus-deuterium bond lengths of 1.44(5) Å and 1.40(4) Å were obtained for the two inequivalent sites in the unit cell.
1017

Epitaksinių InGaAs kvantinių taškų darinių moduliuoto atspindžio ir fotoliuminescencijos spektroskopija / Modulated Reflectance and Photoluminescence Spectroscopy of Epitaxial InGaAs Quantum Dot Structures

Nedzinskas, Ramūnas 01 October 2012 (has links)
Saviformuojantys puslaidininkiniai kvantiniai taškai (quantum dots, QDs), kurių charakteringos elektronų subjuostinių (intraband) šuolių energijos yra infraraudonajame spektriniame ruože (3–25 μm), sudaro daugelio fotojutiklių aktyviąją terpę ir yra aktualūs taikymams šiuolaikinėje optoelektronikoje. Disertacijoje nagrinėjami molekulinio pluoštelio epitaksijos būdu užauginti: -- InAs kvantiniai taškai, įterpti į GaAs matricą ir GaAs/AlAs supergardelę; -- InAs kvantiniai taškai be ir su įtempimus sumažinančiuoju InGaAs sluoksniu, įterpti į kompozitinę GaAs/AlAs kvantinę duobę; -- skirtingo aukščio koloniniai InGaAs kvantiniai taškai arba kvantiniai strypeliai (quantum rods, QRs), apsupti dvimačiu InGaAs sluoksniu, ir užauginti naudojant arba As2, arba As4 šaltinį. Taikant moduliacinę atspindžio spektroskopiją ir fotoliuminescenciją, buvo ištirtos šių darinių optinės savybės bei jų elektroninė sandara, o taip pat atskleista auginimo sąlygų įtaka darinių struktūrai. Eksperimentiniai tyrimai buvo interpretuojami atliekant teorinį modeliavimą skaitmeniniu (nextnano3 programa) bei analitiniu (sukurtas algoritmas) metodais. / Self-assembled InAs quantum dots (QDs), whose intersublevel transition energies lie in the mid- and far-infrared spectral range (3–25μm), have attracted particular interest as active elements of infrared photodetectors. This interest is mainly due to intriguing atomic-like quantum confinement and unique optical and electronic properties of QDs. Moreover, QD electronic structure can be adjusted by varying the dots size and shape or their environment. These features make QDs to be of importance in creation of photoelectronic devices with a desired spectral range. The dissertation is concerned specifically with molecular beam epitaxy grown InGaAs QD structures with: -- InAs QD stacks embedded in GaAs matrix and GaAs/AlAs superlattice (SL), or alternatively InAs/GaAs QD-SL structures with and without AlAs barriers between the dot layers; -- InAs QDs with and without InGaAs strain-reducing layers, embedded within GaAs/AlAs quantum wells; -- columnar InGaAs QDs, also referred to as quantum rods (QRs) or quantum posts, of different morphology. (The quantum confined structure consists of vertically oriented InGaAs QRs immersed in a two-dimensional InGaAs layer). These QD structures were studied by modulated reflectance and photo- luminescence spectroscopies to reveal their optical properties and the full- extent of electronic structure. Experimental data were interpreted by numerical (nextnano3 software) and analytical (algorithm developed) modelling.
1018

Investigating the Influence of Mechanical anisotropy on the Fracturing Behaviour of Brittle Clay Shales with Application to Deep Geological Repositories

Lisjak Bradley, Andrea 10 January 2014 (has links)
Clay shales are currently being assessed as possible host rock formations for the deep geological disposal of radioactive waste. However, one main concern is that the favourable long-term isolation properties of the intact rock mass could be negatively affected by the formation of an excavation damaged zone (EDZ) around the underground openings. This thesis investigated the deformation and failure process of a clay shale, namely Opalinus Clay, with particular focus on the influence of anisotropy on the short-term response of circular tunnels. To achieve this goal, a hybrid continuum-discontinuum numerical approach was used in combination with new field measurements from the Mont Terri underground research laboratory. The response of Opalinus Clay during the excavation of a full-scale emplacement (FE) test tunnel was characterized by geodetic monitoring of wall displacements, radial extensometers and longitudinal inclinometers. The deformation measurements indicated strong directionality induced by the combined effect of in situ stress field and presence of bedding planes striking parallel to the tunnel axis, with the most severe deformation occurring in the direction approximately perpendicular to the material layering. Computer simulations were conducted using a newly-extended combined finite-discrete element method (FEM/DEM), a numerical technique which allows the explicit simulation of brittle fracturing and associated seismicity. The numerical experimentation firstly focused on the laboratory-scale analysis of failure processes (e.g., acoustic activity) in brittle rocks, and on the role of strength and modulus anisotropy in the failure behaviour of Opalinus Clay in tension and compression. The fracturing behaviour of unsupported circular excavations in laminated rock masses was then analyzed under different in situ stress conditions. Lastly, the modelling methodology was applied to the aforementioned FE tunnel to obtain original insights into the possible EDZ formation process around emplacement tunnels for nuclear waste. The calibrated numerical model suggested delamination along bedding planes and subsequent extensional fracturing as key mechanisms of the damage process potentially leading to buckling and spalling phenomena. Overall, the research findings may have a potential impact on the constructability and support design of an underground repository as well as implications for its long-term safety assessment procedure.
1019

Strength and deformability of fractured rocks

Noorian-Bidgoli, Majid January 2014 (has links)
This thesis presents a systematic numerical modeling framework to simulate the stress-deformation and coupled stress-deformation-flow processes by performing uniaxial and biaxial compressive tests on fractured rock models with considering the effects of different loading conditions, different loading directions (anisotropy), and coupled hydro-mechanical processes for evaluating strength and deformability behavior of fractured rocks. By using code UDEC of discrete element method (DEM), a series of numerical experiments were conducted on discrete fracture network models (DFN) at an established representative elementary volume (REV), based on realistic geometrical and mechanical data of fracture systems from field mapping at Sellafield, UK. The results were used to estimate the equivalent Young’s modulus and Poisson’s ratio and to fit the Mohr-Coulomb and Hoek-Brown failure criteria, represented by equivalent material properties defining these two criteria. The results demonstrate that strength and deformation parameters of fractured rocks are dependent on confining pressures, loading directions, water pressure, and mechanical and hydraulic boundary conditions. Fractured rocks behave nonlinearly, represented by their elasto-plastic behavior with a strain hardening trend. Fluid flow analysis in fractured rocks under hydro-mechanical loading conditions show an important impact of water pressure on the strength and deformability parameters of fractured rocks, due to the effective stress phenomenon, but the values of stress and strength reduction may or may not equal to the magnitude of water pressure, due to the influence of fracture system complexity. Stochastic analysis indicates that the strength and deformation properties of fractured rocks have ranges of values instead of fixed values, hence such analyses should be considered especially in cases where there is significant scatter in the rock and fracture parameters. These scientific achievements can improve our understanding of fractured rocks’ hydro-mechanical behavior and are useful for the design of large-scale in-situ experiments with large volumes of fractured rocks, considering coupled stress-deformation-flow processes in engineering practice. / <p>QC 20141111</p>
1020

SPINTRONICS IN CLUSTER-ASSEMBLED NANOSTRUCTURES

Oyarzún, Simón 15 October 2013 (has links) (PDF)
In the last years, the progressive miniaturization of magnetic storage devices has imposed the necessity to understand how the physical properties are modi- ed with respect to the bulk when the dimensions are reduced at the nanometric scale. For this reason an accurate method of preparation and characterization of nanostructures is extremely important. This work focuses on the magnetic and transport properties of cluster-assembled nanostructures, namely cobalt nanoparticles embedded in copper matrices. Our setup allows us to independently control the mean cluster size, the concentration and the chemical composition. The cobalt cluster production is based on magnetron sputtering and gas phase aggregation. The performance of the source permits a wide range of cluster masses, from one to several thousand atoms. As a rst step we studied the role of inter-particle interactions in the transport and magnetic properties, increasing the cobalt nanoparticle concentration (from 0.5% to 2.5% and 5%). Our results demonstrate the necessary precautions and constitute a solid basis for further studies of the spintronic properties of granular systems. Finally, in order to describe the intrinsic magnetic properties of cluster-assembled nanostructures, we prepared strongly diluted samples (<0.5%) for di erent cluster sizes from 1.9 nm to 5.5 nm. We found that the magnetic properties are size-dependent. Using a complete magnetic characterization, sensitive to the change in the e ective magnetic anisotropy, we show that the magnetic anisotropy is dominated by the contributions of the surface or of the shape of the nanoparticles.

Page generated in 0.0941 seconds