• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 64
  • 20
  • 7
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 247
  • 247
  • 57
  • 54
  • 33
  • 31
  • 23
  • 22
  • 22
  • 21
  • 20
  • 19
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Hemocidina sintética Hb40-61a: estudo das propriedades, mecanismo de ação e interação com nanopartículas poliméricas / Synthetic hemocidin Hb40-61a: study on its proprieties, mechanism of action and interactions with polymeric nanoparticles

Carvalho, Larissa Anastácio da Costa 13 November 2012 (has links)
O aumento na incidência de infecções fúngicas e a alta toxicidade ou elevado índice de resistência associado aos antimicóticos comerciais, criou um mercado carente de novas drogas. Neste contexto, os peptídeos antimicrobianos (AMPs) surgem como uma alternativa promissora ou fonte de conhecimento por desempenhar ação inibidora de crescimento e/ ou letal contra bactérias Gram-positivas e Gram-negativas, fungos, parasitas e/ ou vírus, além de atividade antitumoral e efeito imunomodulador. Como os mecanismos pelos quais eles o fazem são diferentes daqueles das drogas não peptídicas, os AMPs estão pouco associados ao desenvolvimento de resistência microbiana. A hemoglobina (Hb) é uma fonte de peptídeos com funções biológicas diversas. O fragmento 33-61 (Hb33-61) da cadeia α da Hb bovina foi o primeiro AMP descrito a ser gerado in vivo no trato gastrointestinal do carrapato Boophilus microplus. Nossos estudos posteriores usando CD e H1-RMN revelaram que a amidação C-terminal deste fragmento o tornava ainda mais ativo que o primeiro e que em presença de micelas de SDS o Hb33-61a apresenta uma dobra β na porção N-terminal (Lys40-Phe43) e outra (Ser49- Ser52) seguida de α-hélice no C-terminal (Ala53-Ala60), bem como um segmento Pro44-Leu48 capaz de mover-se independentemente e agir como uma dobradiça. Nossas investigações usando análogos sintéticos truncados do Hb33-61a mostraram que o Hb40-61a poderia ser sua porção mínima ativa por apresentar comportamento conformacional idêntico. Nossos estudos subsequentes enfocando as suas propriedades evidenciaram a sua capacidade de causar morte rápida de cepas de Candida, incluindo C. albicans resistentes ao fluconazol e extravasamento de conteúdo e formação de poros em LUVs, revelando sua ação permeabilizante de membrana. Em continuidade ao estudo do Hb40-61a, investigamos no presente trabalho as suas propriedades e o seu mecanismo de ação contra C. albicans. Para isso, sintetizamos, purificamos e caracterizamos esta hemocidina, o seu análogo inteiro composto por D aminoácidos (ent-Hb40-61a) e o seu análogo marcado com 5 (6) carboxifluoresceína (FAM-Hb40-61a). Ensaios com eritrócitos humanos confirmaram a baixa atividade hemolítica desses AMPs em meio de alta e baixa força iônica. O análogo ent-Hb40-61a apresentou a mesma atividade antifúngica que o análogo L, evidenciando um mecanismo de ação não-estereoespecífico. Análises de células de Candida tratadas com FAM-Hb40-61a por microscopia confocal mostraram que em ½ MIC e MIC o peptídeo deposita-se na membrana plasmática e é internalizado, respectivamente. Citometria de fluxo demonstrou que na MIC cerca de 97% das células encontram-se marcadas pelo peptídeo, confirmou a influência negativa da alta força iônica em sua atividade, mostrou que a internalização celular na MIC é independente da temperatura e que a alteração no metabolismo energético da célula afeta de maneira negativa a internalização do peptídeo. Ensaios de permeabilidade celular com Syto 09 e iodeto de propídeo confirmaram danos progressivos à membrana plasmática de C. albicans com o aumento da concentração do Hb40-61a. Experimentos usando DiBAC4(5) e de DPH revelaram que o Hb40-61a altera o potencial de membrana e afeta sua fluidez, respectivamente. Imagens preliminares das células tratadas e não tratadas com Hb40-61a por microscopia de força atômica (AFM) sugeriram alterações nas células de C. albicans após tratamento com a hemocidina. Medidas preliminares do diâmetro médio das células de C. albicans revelaram que elas diminuem após o tratamento com o peptídeo, o que pode ser mais um indício de dano à membrana plasmática por formação de poros e extravasamento de conteúdo intracelular. Assim, obtivemos fortes indícios de que o alvo do Hb40-61a é, de fato, a membrana plasmática das células de Candida, de que ele apresenta potencial de uso tópico para tratamento de candidíase e pode servir como modelo para o desenho de novas drogas antimicrobianas, peptídicas ou não, com propriedades ainda mais valiosas e índices terapêuticos mais elevados. Testes preliminares mostraram que é possível a adsorção do Hb40-58a à nanopartículas de PSS e que, em relação ao peptídeo livre, este arranjo mantém a atividade antifúngica com MIC superior e apresenta menor atividade hemolítica. / The increased incidence of fungal infections and the high toxicity or high level of resistance associated with conventional antimycotics created a demand for new drugs. Antimicrobial peptides (AMPs) constitute a promising alternative and/or an important source of knowledge due to their growth inhibitory action and/or lethality against Gram-positive and Gram-negative bacteria, fungi, parasites and/or viruses. Besides, AMPs display antitumoral and immunomodulator effects. As their mechanisms of action are different from those of non-peptide drugs, AMPs are less associated with the development of antimicrobial resistance. Hemoglobin (Hb) is a source of peptides with diverse biological functions. The fragment 33-61 (Hb33-61) of bovine Hb α chain was the first AMP reported to be generated in vivo in gastrointestinal tract of Boophilus microplus. Our studies of Hb33-61 using CD and H1-NMR showed that amidation of its C-terminal (Hb33-61a) increases its activity; in the presence of SDS micelles, Hb33-61a is characterized by a central hinge joining the C-terminal region (containing a β turn followed by a helical element) to the N-terminal region (that presents only a β turn). Our previous investigations using synthetic truncated analogues of Hb33-61a suggested that Hb40-61a could be its minimal active portion as it presented equal biological and structural properties. Our subsequent studies focusing on its properties showed its ability to quickly kill Candida albicans strains (including those resistant to fluconazole) and to cause leakage of the contents of LUVs and pore formation in GUVs, revealing its membrane permeabilizing action. We further investigated the properties of Hb40-61a and its possible mechanism of action against C. albicans. To do it, we synthesized, purified and chemically characterized it, its all-D analogue (ent-Hb40-61a) and its analogue labeled with 5 (6) carboxyfluorescein (FAM-Hb40-61a). Tests using human erythrocytes confirmed the low toxicity of these hemocidins at high or low ionic strength. The ent-analogue was as active as the all-L compound suggesting a non stereospecific mechanism of action. Confocal microscopy analysis of Candida cells treated with FAM-Hb40-61a showed that at ½ MIC and MIC, the peptide deposits on the plasma membrane and is internalized, respectively. Flow cytometry results showed that at the MIC about 97% of the cells are marked by the peptide, confirmed the negative influence of high ionic strength on its antifungal activity and showed that the cellular internalization at the MIC is partially dependent on ATP, but independent on the temperature. Cell permeabilization assays using Syto 09 and propidium iodide confirmed progressive damage of the membrane as a function of Hb40-61a concentration. Experiments employing DiBAC4 (5) and DPH revealed that the Hb40- 61a alters the membrane potential and affects its fluidity, respectively. Preliminary atomic force microscopy (AFM) images of C. albicans cells before and after treatment with Hb40-61a suggested morphological changes in the plasma membrane. Preliminary measurements of the average diameters of the fungal cells indicated size reduction after treatment with the Hb40-61a probably resulting from pore formation and leakage of cell contents. Thus, we obtained strong evidences that the target of this peptide is indeed the plasma membrane of Candida cells. Thus, this hemocidin have the potential to be used topically for treating candidiasis and/or serve as model for the design of new antimicrobial drugs, peptide or non-peptide, with even more valuable properties and improved therapeutic indexes. Preliminary tests confirmed the possibility of adsorbing Hb40-58a to nanoparticles of polystyrene sulfate (PSS) and that resulting assembly is still active and less hemolytic than the free peptide.
62

Estudo da resposta imune inata em quilópodes (Scolopendromorpha Myriapoda). / Study of the innate immune response in Chilopoda (Scolopendoromorpha, Myriapoda).

Aguirre, Elisa Chaparro 11 August 2017 (has links)
Os peptídeos bioactivas são fundamentais no sistema imune inato (SII), devido a que eles proveem informação importante sobre o SII. O objetivo deste estudo é caracterizar os componentes e reações do SII em quilópodes. Para isto, analisamos o transcriptoma dos hemócitos de Scolopendra subspinipes subspinipes; assim como também, extraímos, purificamos e caracterizamos os peptídeos antimicrobianos presentes na exúvia, o extrato total e a hemolinfa de S. s. subspinipes e S. viridicornis. Várias frações com atividade antimicrobiana foram isoladas da hemolinfa. Dois novos peptídeos antimicrobianos foram caracterizados e sintetizados: a Pinipesina, de S. s. subspinipes e a Lacraina, de S. viridicornis. A análise preliminar do transcriptoma apresentou que os contigs relacionados ao SII foram transcritos com mais frequência moléculas com atividade regulatória (33,7%) e de reconhecimento (11,6%), e as relacionadas a cascata de coagulação (21,4%). Uma análise mais completa do transcriptoma e das moléculas bioactivas é apresentado. / Bioactive peptides are vital in the innate immune system (IIS), because they provide substantial information about the IIS. This study aims to characterize the components and reactions that constitute the ISS in Chilopoda. For this, we analyzed the hemocytes transcriptome from Scolopendra subspinipes subspinipes; as also extracted, purified and characterized the bioactive peptides presents in the exuviae, the body extract and the hemolymph from S. s. subspinipes and S. viridicornis. Several fractions with antimicrobial activity from the hemolymph were isolated. Two new antimicrobial peptides were characterized and synthetized as well: The Pinipesin, from S. s. subspinipes, and the Lacrain, from S. viridicornis. The preliminary analysis from the transcriptome show that the contigs related to the IIS were transcribed more frequently molecules with regulatory (33,7 %) and recognition (11,6%) activities, and those involved in the coagulation cascade (21,4%). A more complete analysis of the transcriptome and the bioactive molecules is presented.
63

Investigating Bacterial Lipopolysaccharides and Interactions with Antimicrobial Peptides

Strauss, Joshua 20 January 2009 (has links)
The goal of this research was to develop a novel biosensor for detecting and eliminating pathogenic E. coli. Traditionally, identifying pathogenic E. coli and distinguishing it from harmless environmental strains includes serotyping and DNA sequencing, which can take days or weeks. Our biosensor platform makes use of a material that is part of the immune system from single- multi- cellular organisms that target viruses, fungi, and bacteria called antimicrobial peptides (AMPs). Using the quartz crystal microbalance with dissipation monitoring (QCM-D), we characterized non-specific binding between CP1 to silicon nitride and gold, and covalent binding of cysteine-terminated CP1 (CP1-cys) to gold. QCM-D monitors frequency and dissipative changes resulting from adsorbed mass, and peptide film thickness and density can be calculated using Voigt Viscoelastic modeling. Viability of the E. coli was monitored using a live/dead kit consisting of nucleic acid stains Syto 9 and Propidium Iodide. Successfully immobilizing peptide to a substrate is particularly important if CP1 would be applied on a food processing surface. By immobilizing CP1 to silicon nitride, we measured the binding forces between bacteria and peptides with the atomic force microscope (AFM), and explored important bacterial features such as LPS composition and length that influence binding affinity with CP1. The structure of the LPS is comprised of 3 sections: lipid A, core group, and O-antigen. We are mostly interested in the initial binding between AMP and LPS since our goal is to develop a novel biosensor that can detect pathogenic bacteria within seconds of exposure. Considering the short exposure period, the AMP would only be exposed to the O-antigen and outer core groups, which are repeating sugar chains that are essential for bacterial pathogenicity and adhesion to substrates. Although geared for use as a novel biosensor, results of this study can also be applied to the use of AMPs for replacing or enhancing the activity of antibiotics. Our work suggests that CP1 may not be serotype-specific, but targets the O-antigen before interfering with phospholipid groups of the bacterial membrane. Other factors that assist in pathogenicity, such as LPS length, may also be important for the consideration of CP1 potency.
64

Efeitos da dimerização e modificações na porção N-terminal do peptídeo antimicrobiano Aureína 1.2 em sua interação com filmes de Langmuir e atividade biológica / Effects of dimerization and modifications in the N-terminal portion of the antimicrobial peptide Aurein 1.2 in its interaction with Langmuir monolayers and in its biological activity

Montanha, Érica Azzolino 08 November 2016 (has links)
Filmes de Langmuir são usados como modelos simplificados de membranas celulares, cujas propriedades podem ser correlacionadas com efeitos fisiológicos de moléculas de interesse biológico, como os peptídeos antimicrobianos (PAMs). Nesta dissertação investigamos a interação do peptídeo Aureína 1.2, na forma de monômero (AU), dímero ((AU)2K) e com variações na porção N-terminal (KAU e DAU), com filmes de Langmuir obtidos do extrato lipídico da bactéria Escherichia coli. Todos os peptídeos injetados em concentrações de 20 a 200nM se incorporaram ao filme de Langmuir, causando expansão nas isotermas de pressão superficial, que foi significativamente maior para o dímero. O módulo de compressibilidade do filme de E. coli à pressão superficial correspondente à de uma membrana real praticamente dobrou, de cerca de 40mN/m para 80nM/m para o dímero, ao passo que para os outros peptídeos a alteração não foi significativa. Dos espectros de reflexão e absorção no infravermelho com modulação de polarização (PM-IRRAS), observou-se que todos os peptídeos interagiram tanto com as caudas quanto com as cabeças polares das moléculas do extrato de E. coli no filme de Langmuir. Diferentemente dos resultados de pressão e compressibilidade, não há tendência de um peptídeo ter interação mais relevante do que os outros. O maior efeito do dímero na expansão e compressibilidade do filme de Langmuir não se refletiu numa maior atividade bactericida contra E. coli, pois sabe-se da literatura que a atividade é maior para a Aureína 1.2 (AU). Provavelmente porque essa atividade deve depender da camada externa de lipopolissacarídeos de uma bactéria Gram-negativa. / Langmuir films are used as simplified cell membrane models whose properties can be correlated with physiological effects of molecules of biological interest, such as antimicrobial peptides (AMPs). In this dissertation we report on the interaction of Aurein 1.2 peptide as monomer (AU), dimer ((AU)2K) and modified peptide in the N-terminal portion (KAU and SAD), with Langmuir films obtained from a lipid extract of Escherichia coli. All peptides injected at concentrations from 20 to 200nM were incorporated into the Langmuir film, causing the surface pressure isotherm to expand, particularly for the dimer. The compressibility modulus of the E. coli Langmuir film at the surface pressure corresponding to an actual membrane nearly doubled, from about 40mN/m to 80nM/m for the dimer, whereas for the other peptides the change was not significant. From the polarization-modulated infrared reflection - absorption spectra (PM-IRRAS), we observed that all peptides interacted with both tails and polar heads of the molecules of E. coli extract in the Langmuir film. Unlike the results of pressure and compressibility, there was no tendency of a peptide having more relevant interaction than the others. The larger effect of the dimer in the expansion and compressibility of the Langmuir film was not reflected in a higher bactericidal activity against E. coli, since it is known from literature that the activity is higher for Aurein 1.2 (AU). Probably because this activity should depend on the outer layer of lipopolysaccharides of Gram-negative bacteria.
65

Peptídeos antimicrobianos da hemolinfa do escorpião: Tityus serrulatus. / Antimicrobial peptides from the hemolymph of the scorpion: Tityus serrulatus.

Oliveira, Thiago de Jesus 05 October 2016 (has links)
Em artrópodes o sistema imune inato contribui para a adaptação de animais como os escorpiões à diferentes ambientes. Esse sistema é composto por mecanismos capazes de agir contra injúrias e a ação de microrganismos e entre esses mecanismos estão os peptídeos antimicrobianos (PAMs). O objetivo deste trabalho foi identificar PAMs presentes na hemolinfa de Tityus serrulatus. Para isso sua hemolinfa foi extraída e separados os hemócitos e plasma, em seguida fracionamos em 3 concentrações de acetonitrila em TFA 0,05% (05, 40 e 80%). Estas frações foram submetidas a uma cromatografia liquida de alta eficiência (CLAE) e os picos foram avaliados quanto a sua ação antimicrobiana e hemolítica. Foram identificadas 16 frações que apresentam atividade antimicrobiana. Uma das frações com atividade antimicrobiana, presente nos hemócitos apresentou similaridade com defensina descrita em carrapatos da espécie Ixodes scapularis. Essa fração possui aproximadamente 3486 Da, não apresenta atividade hemolítica e foi denominada como Serrulina. / In arthropods, its innate immune system contributes to the adaptation of animals like scorpions to different environments. This system consists of mechanisms that act avoiding injuries and against the action of microorganisms, among these mechanisms are antimicrobial peptides (AMPs). The aim of this study was to identify AMPs, present in the hemolymph of Tityus serrulatus. The hemolymph was extracted and then we separated hemocyte and plasma. The samples were fractionated in different concentrations of acetonitrile in TFA 0.05% (05, 40 and 80%). These fractions were subjected to high-performance liquid chromatography (HPLC) and the peaks obtained were evaluated for its antimicrobial and hemolytic action. We found sixteen fractions with antimicrobial activity. One of the fractions with antimicrobial activity, present in hemocytes, is similar with a defensin described in ticks, Ixodes scapularis. This fraction has about 3486 Da, has no hemolytic activity and was named as Serrulina.
66

Mechanisms of Antimicrobial Peptide Resistance in Campylobacter

Hoang, Ky Van 01 November 2010 (has links)
Campylobacter is the major bacterial cause of human gastroenteritis in the United States and other developed countries. Poultry are considered a main source of human Campylobacter infections. Thus, reduction of Campylobacter load in poultry is significant in food safety and public health. However, no effective measure is commercially available to prevent Campylobacter colonization in poultry to date. Antimicrobial peptides (AMPs) are short and bactericidal peptides widely present in intestine to limit bacterial infections. Recently, AMPs have been increasingly recognized as a novel class of antibiotics (peptide antibiotics) to control foodborne pathogens. Notably, several potent anti-Campylobacter bacteriocins, a group of AMPs produced by commensal bacteria, dramatically reduced C. jejuni colonization in chickens and are being directed toward on-farm control of this pathogen to protect public health. As an important strategy to evade killing by potential peptide antibiotics and by host innate defense, AMP resistance mechanisms in C. jejuni are critical to understand, but are still unknown. In this dissertation, molecular basis of Campylobacter resistance to polymyxin B, the anti-Campylobacter bacteriocins (BCNs), and a chicken host defense AMP (fowlicidin-1) was comprehensively examined using both in vitro and in vivo systems. Although polymyxin B has been successfully used as a model peptide to study AMP resistance in other Gram-negative bacteria, functional genomics examination in this study suggested that polymyxin B is not a good surrogate to study Campylobacter resistance to physiologically relevant AMPs. Campylobacter only developed low-level BCN resistance with low frequency in vitro and in vivo; the acquired BCN resistance was not stable in Campylobacter. Genomic examination of two BCN resistant mutants using DNA microarray and random transposon mutagenesis revealed that the multidrug efflux pump CmeABC contributes to both intrinsic and acquired resistance of Campylobacter to the BCNs. Random transposon mutagenesis and targeted site-directed mutagenesis identified four genes (cbrR, tig, cjaB, and cj1583c) involved in Campylobacter resistance to fowlicidin-1. These genes were also required for optimal colonization of Campylobacter in chickens. Together, the findings from this dissertation revealed uniqueness and complexity of AMP resistance in Campylobacter and will enable us to develop more sustainable peptide antibiotics and novel intervention strategies to prevent and control Campylobacter infections in humans and animal reservoirs. Key words: Campylobacter, antimicrobial peptide resistance, polymyxin B, bacteriocins, fowlicidins
67

Antimicrobial Activity of Casein Hydrolysates against Listeria monocytogenes and Escherichia coli O157:H7

Christman, Jessica M 01 December 2010 (has links)
Listeriosis has the highest fatality and hospitalization rate among foodborne illnesses. Listeria monocytogenes causes listeriosis and is a difficult bacterium for ready-to-eat food processors to eliminate because of its ability to grow in the absence of oxygen and under refrigeration. Recently, milk and its proteins have gained recognition as the largest source of biologically active peptides, and, it stands reason that several antimicrobial peptides (AMP) can be released from casein as it is the most abundant milk protein. AMPs are commonly obtained by cutting the whole protein into peptide fragments using enzymes or by acidification. The objective of this study was to predict potential AMPs through computer aided tools, improve hydrolysate preparation, and determine trypsin and pepsin-casein hydrolysate antimicrobial activity in growth media and on frankfurters against two strains of Listeria monocytogenes (Scott A and 310) and Escherichia coli O157:H7 (Salami strain). The prediction study procedure was to identify the most common variants of primary peptide sequences. The sequences were analyzed for greatest possible enzyme cuts on the protein, peptide masses, isoelectric point, net charge and percent hydrophilic residues using online proteomics programs. The fragments were explored for AMP commonalities: fragment length of 3 to 50 amino acids, positive (cationic) net charge, and hydrophilic residues between 25 and 50%. This technique identified 16 potential AMPs which proved that it is possible to screen for AMPs. The method used to determine the trypsin-casein hydrolysate (TCH) and pepsin-casein hydrolysate (PCH) antimicrobial activity was to hydrolyze sodium caseinate with pepsin or trypsin. L. monocytogenes (strains Scott A and 310) were incubated in 0, 10, 20, and 40% PCH and 0 and 50% TCH concentrations over a 24 hour period. PCH suppressed growth of L. monocytogenes Scott A by 1.76 log CFU/mL and reduced initial populations of L. monocytogenes 310 and E. coli O157:H7 by 0.52 and 0.62 log CFU/ml, respectively. TCH had little or no effect on growth suppression of any of the three test organisms. The frankfurter study was conducted by spot inoculating frankfurters with L. monocytogenes Scott A and then dipping frankfurters into one of five treatments (deionized water, pH 2.7 buffer, pH 5.1 buffer, pH 2.7 PCH, and pH 5.1 PCH) for 30 seconds; inoculated frankfurters that were not dipped served as controls. Frankfurters were incubated at 32°C for seven days. The results showed that there was no significant difference (p>0.05) in antimicrobial effectiveness among the treatments and control. This study demonstrated that enzymatically derived casein hydrolysates somewhat inhibit growth of L. monocytogenes and E. coli O157:H7 in culture media, but were ineffective when applied to frankfurters. Casein hydrolysate solutions can be easily made in a processing facility for application in fluid systems such as an antimicrobial spray on beef carcasses and in milk, juice, sports drinks, soda, soups, and yogurt. It also could be used in solid systems such as frankfurters, cheese, ground beef, and processed or RTE foods.
68

Communicate or die : signalling in Drosophila immunity

Borge-Renberg, Karin January 2008 (has links)
In general the work behind this thesis has revolved around the interesting pattern recognition gene family PGRPs (peptidoglycan recognition proteins). In particular the transmembrane PGRP-LC and to investigate its multifaceted role in the immune response of the fruit fly. As a well characterized model organism living on, and surrounded by, a multitude of microorganisms, Drosophila melanogaster serves as a great tool to gain insights about innate immunity. The two pillars of Drosophila innate immunity are the humoral and the cellular defense. Together they are very potent and can vanquish many infections, but if one of these pillars is damaged, chances are that the defense will collapse and the organism will succumb to the infection. The initial step in any immune response is to become aware of the pathogen. To accomplish this, innate immunity relies on recognizing common molecular building blocks necessary each group of microorganisms. One such building block is the bacterial cell wall component peptidoglycan. PGRPs are a widely spread gene family, and proteins of this family can bind peptidoglycan. We describe that there are 13 PGRP genes in Drosophila, one these codes for PGRP-LC. As it sits in the cell membrane in any of its three different splice forms, PGRP-LC can bind peptidoglycan, dimerize, and subsequently activate the imd/relish signalling pathway, and thereby trigger a vast production of antimicrobial peptides. These short peptides are the firearms of the humoral response. We identified three new inducible antimicrobial peptide genes, Diptericin B, Attacin C and Attacin D. Analyses of their sequences shed light on the evolution and relationship of these antimicrobial peptides The antimicrobial peptides are potent weapons, but without a functional cellular response the animal is at loss. Animals lacking blood cells are gravely compromised. It is interesting to find that PGRP-LC is involved at this end of the immune response equation as well. We have found that PGRP-LC is able to activate blood cells and increase numbers of circulating cells, in a JNK (Jun N-terminal kinase) dependent manner. Intriguingly this activation is not dependent on Relish, the NF-kB transcription factor of the Imd/Relish pathway. PGRP-LC activation funnels into both Imd/Relish and the JNK pathways. When PGRP-LC is lost, it appears that some basal, or background, JNK activation is lost. These effects are very mild, however the animal appears to become more sensitive to additional perturbations in this signalling pathway. This was the starting point when we started to re-evaluate Dredd, the caspase responsible for cleaving and activating Relish. Dredd also contributes to the JNK signalling pathway.
69

Bacterial Resistance to Antimicrobial Peptides : Rates, Mechanisms and Fitness Effects

Pränting, Maria January 2010 (has links)
The rapid emergence of bacterial resistance to antibiotics has necessitated the development of alternative treatment strategies. Antimicrobial peptides (AMPs) are important immune system components that kill microbes rapidly and have broad activity-spectra, making them promising leads for new pharmaceuticals. Although the need for novel antimicrobials is great, we also need a better understanding of the mechanisms underlying resistance development to enable design of more efficient drugs and reduce the rate of resistance development. The focus of this thesis has been to examine development of bacterial resistance to AMPs and the resulting effects on bacterial physiology. The major model organism used was Salmonella enterica variant Typhimurium LT2. In Paper I, we observed that bacteria resistant to PR-39 appeared at a high rate, and that the underlying sbmA resistance mutations were low cost or even cost-free. Such mutants are more likely to rapidly appear in a population and, most importantly, will not disappear easily once the selective pressure is removed. In paper II, we isolated protamine-resistant hem- and cydC-mutants that had reduced growth rates and were cross-resistant to several other antimicrobials. These mutants were small colony variants (SCVs), a phenotype often associated with persistent infections. One SCV with a hemC-mutation reverted to faster growth when evolved in the absence of protamine. In paper III, the mechanism behind this fitness compensation was determined, and was found to occur through hemC gene amplification and subsequent point mutations. The study provides a novel mechanism for reversion of the SCV-phenotype and further evidence that gene amplification is a common adaptive mechanism in bacteria. In Paper IV, the antibacterial properties of cyclotides, cyclic mini-proteins from plants, were evaluated. Cycloviolacin O2 from violets was found to be bactericidal against Gram-negative bacteria. Cyclotides are very stable molecules and may be potential starting points for development of peptide antibiotics.
70

Ion selectivity and membrane potential effects of two scorpion pore-forming peptides / D. Elgar

Elgar, Dale January 2005 (has links)
Parabutoporin (PP) and opistoporin 1 (OP1) are cation, a-helical antimicrobial peptides isolated from the southern African scorpion species, Parabuthus schlechteri and Opistophthalmus carinatus, respectively. Along with their antimicrobial action against bacteria and fungi, these peptides show pore-forming properties in the membranes of mammalian cells. Pore-formation and ion selectivity in cardiac myocytes were investigated by measuring the whole cell leak current by means of the patch clamp technique. Pore-formation was observed as the induction of leak currents. Ion selectivity of the pores was indicated by the shift of the reversal potential (E,,,) upon substitution of intra (K' with CS' and CI- with aspartate) and extracellular (Na' with NMDG') ions. Results were compared with the effect of gramicidin A used as a positive control for monovalent cation selective pores. PP and OP I induced a fluctuating leak current and indicate non-selectivity of PP and OP1-induced pores. An osmotic protection assay to determine estimated pore size was performed on the cardiac myocytes. PP and OP1-induced pores had an estimate pore size of 1.38-1.78 nm in diameter. The effect of PP and OP1 on the membrane potential (MP) of a neuroblastoma cell line and cardiac myocytes was investigated. TMRM was used to mark the MP fluorescently and a confocal microscope used to record the data digitally. The resting membrane potential (RMP) of the neuroblastoma cells was calculated at -38.3 f 1.9 mV. PP (0.5 uM) and OP1 (0.5-1 uM) depolarized the entire cell uniformly to a MP of -1 1.9 k 3.9 mV and -9.4 k 1.9 mV, respectively. This occurred after 20-30 min of peptide exposure. In the case of the cardiac myocytes depolarization was induced to -39.7 f 8.4 mV and -32.6 f 5.2 mV by 0.5-1 uM PP and 1.5-2.5 uM OPl, respectively. / Thesis (M.Sc. (Physiology))--North-West University, Potchefstroom Campus, 2006.

Page generated in 0.0363 seconds