271 |
Spectroscopy and Kinetics of Weakly Bound Gas-Phase Adducts of Atmospheric InterestDookwah-Roberts, Venus Maria Christina 21 May 2008 (has links)
A number of weakly bound adducts play important roles in atmospheric chemistry, such as DMS OH and CS2 OH. The work comprising this dissertation involves kinetic and spectroscopic studies of adducts formed between halogen atoms and the important atmospheric trace gases CS2, CH3SCH3 (DMS), CH3I, and C2H5I. The results reported in these studies are useful for developing an understanding of the reactivity of these species and for testing the ability of electronic structure theory and reaction rate theory to predict or rationalize any observed trends. Oxidative pathways of both alkyl halides and sulfur compounds, especially DMS, are of atmospheric interest based on the roles of these species in affecting the oxidizing capacity of the troposphere and in the formation of new particles which impact the Earth s radiation budget and climate variability.
The experimental approach employed laser flash photolysis (LFP) coupled with time resolved UV-visible absorption spectroscopy (TRUVVAS) to investigate the spectroscopy and kinetics of the gas phase adducts: SCS Cl, CH3I Cl, C2H5I Cl, (CH3)2S Br, and (CH3)2S I.
|
272 |
LIF instrument development, in situ measurement at South Pole and 1D air-snowpack modeling of atmospheric nitrous acid (HONO)Liao, Wei 02 April 2008 (has links)
Atmospheric nitrous acid (HONO) is a significant and sometimes dominant OH source at polar region. An improved method of detecting HONO is developed using photo-fragmentation and laser-induced fluorescence (LIF). The detection limit of this method is 2-3 pptv for ten-minute integration time with 35% uncertainty. The abundance of laser-induced fluorescence (LIF) HONO measurements during ANTCI (Antarctic troposphere chemistry investigation) 2003 exceeds the pure gas phase model predictions by a factor of 1.92±0.67, which implies snow emission of HONO. A 1D air-snowpack model of HONO was developed and constrained by observed chemistry and meteology data. The 1D model includes pure gas phase chemical mechanisms, molecular diffusion and mechanical dispersion, windpumping in snow, gas phase to quasi-liquid layer phase HONO transfer and quasi-liquid layer nitrate photolysis. Based on the air-snowpack model, snow emission of HONO is highly likely and will be transported to place of the measurements. The pH, thickness of quasi liquid layer and contineous nitrite measurement are key factors to calibrate and validate the air snowpack model.
|
273 |
The impact of boreal biomass burning on North American air qualityFinch, Douglas Peter January 2017 (has links)
Understanding the quality of the air we breathe is critical in quantifying the impact that atmospheric chemistry has on health. Poor air quality increases the risk of heart and lung diseases as well as having a detrimental effect on climate, ecology and the built environment. The burning of fossil fuels and plant matter (biomass burning) creates large quantities of gases and particulate matter that impact air quality and the air we breathe. Biomass burning is estimated to contribute 400 Tg of non-methane organic compounds, 40 Tg of methane and 7.1 Tg of nitrogen oxides to the atmosphere each year. This thesis aims to better understand the role of biomass burning on air quality and tropospheric chemistry. The in depth analysis presented here addresses of the impact of boreal biomass burning in North America on air quality, in particular, carbon monoxide (CO) and ozone (O3). By using a number of different modelling techniques along with data collected from a field campaign and satellites the transport and chemistry of biomass burning emissions were analysed and quantified. The first research chapter of the thesis used the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of CO in biomass burning outflow taken during the 2011 BORTAS-B campaign over Canada. The model has some skill reproducing the observed variability, but has a positive bias for observations < 100 ppb and a negative bias for observations > 300 ppb. It was found that observed CO variations are largely due to fires over Ontario, with smaller and less variable contributions from fossil fuel combustion from eastern Asia and NE North America. To help interpret observed variations of CO an effective physical age of emissions (¯A) metric was developed. It was found that during BORTAS-B the age of emissions intercepted over Halifax, Nova Scotia is typically 4–11 days, and on occasion as young as two days. The analysis shows that ¯A is typically 1–5 days older than the associated photochemical ages inferred from co-located measurements of different hydrocarbons. It is argued that a robust observed relationship between CO and black carbon aerosol during BORTAS-B (r² > 0.7), form the basis of indirect evidence that aerosols co-emitted with gases during pyrolysis markedly slowed down the plume photochemistry during BORTAS-B with respect to photochemistry at the same latitude and altitude in clear skies. The second research chapter focuses on O3 production downwind from boreal biomass burning. Using the GEOS-Chem model, the O3 chemistry within a biomass burning plume from a fire on 17 July 2011 in mid-Canada was examined. The model shows a significant positive bias (~20 ppb) in reproducingO3 mixing ratios over North America for July 2011 when compared to observations. Reducing NO emissions from lightning and fossil fuel by 50% and 54% respectively reduced this bias to ~10 ppb. The cause of the remaining bias is uncertain. Using a novel technique with the model, the centre of the biomass burning plume was tracked and O3 concentrations and chemistry was extracted from the centre of the plume. The biomass burning enhanced O3 concentrations throughout the plume by between 1 – 20 ppb when compared with the same plume path with no biomass burning. The plume was characterised as being NOx-rich for the initial four days of transport. The sensitivity of the O3 chemistry to different emissions was calculated and it was found that the O3 is initially highly sensitive to NO emissions from biomass burning and then to NO emissions from fossil fuels as it travels across an urban area surrounding Quebec City. The O3 net production was found to initially decrease with an increase in NO but increase further downwind. The final research chapter of the thesis uses long-term satellite observations to evaluate natural variability in CO concentrations over the North Atlantic. 15 years of MOPITT CO column observations were used along with modelled CO from the GEOS-Chem model. The model was evaluated against the MOPITT overpass and shows a negative bias of between -8% and -24% over the northern mid-latitudes with the largest bias seen in spring. The model has a large positive bias (8% – 40%) over the Amazon,West Africa and Indonesia through all seasons. Using Empirical Orthogonal Function (EOF) analysis on the MOPITT and GEOS-Chem CO columns shows the largest mode of variability seen in the North Atlantic to be the oxidation of methane for winter and spring, biomass burning during summer and fossil fuel combustion from East Asia during autumn.
|
274 |
Novel methods to characterise atmospherically relevant organic radicals and reactive oxygen speciesCampbell, Steven John January 2018 (has links)
A key reaction in the troposphere involves the oxidation of biogenic and anthropogenic alkenes with ozone, which contributes to local photochemical smog. It is generally accepted that this reaction proceeds via a reactive intermediate often called the Criegee intermediate (CI). This reaction is known to produce a plethora of oxidised organic compounds, which contribute to ozone formation and secondary organic aerosol production, two of the main characteristics of a polluted atmosphere. Furthermore, epidemiological studies have shown a close correlation between exposure to ambient organic aerosol and adverse human health effects. The toxicological mechanisms leading to this observation are still poorly characterised, although studies suggest that reactive oxygen species present in organic aerosol are a major contributor. Reactive oxygen species and reactive intermediates represent a large uncertainty in tropospheric chemistry, and pose an analytical challenge due to their high reactivity and typically low concentrations. This emphasises the need for the development of new methods to characterise the chemistry of these species. In this thesis, several novel laboratory based techniques have been developed in order to characterise and quantify reactive intermediates and reactive oxygen species. New methods to facilitate the detection of CIs in both the gas and particle phase are presented. Spin trap molecules are used to scavenge CIs to form stable 1:1 adducts which are subsequently detected and quantified using mass spectrometry. The chemistry of CIs with spin traps is extensively investigated. The unique capability of this technique to simultaneously characterise multiple CIs generated from a variety of atmospherically relevant organic precursors in the gas phase is demonstrated. This technique was further developed to facilitate the detection of CIs in secondary organic aerosol, representing the development of a method capable of characterising low volatility CIs and other reactive intermediates in the condensed phase. Furthermore, two new chemical fluorescence assays have been developed to quantify both organic radicals and reactive oxygen species in organic aerosol. A novel profluorescent spin trap assay was applied to quantify radical concentrations in organic aerosol. A series of experiments were then devised to investigate the lifetime of organic radicals in secondary organic aerosol. A second assay, based on physiologically relevant ascorbic acid chemistry, was also developed to measure the concentrations of toxicologically relevant reactive oxygen species in secondary organic aerosol. The quantitative capability of this assay was extensively characterised. The assay was incorporated into a prototype instrument capable of measuring particle-bound reactive oxygen species on-line, and the assays’ sensitivity to secondary organic aerosol was demonstrated.
|
275 |
Variability and trends of black carbon in Europe over the last 140 years retrieved from a Caucasian ice core / La variabilité et de l'évolution de carbone-suie en Europe au cours des 140 dernières années, extraites d'une carotte de glace du CaucaseLim, Saehee 09 December 2014 (has links)
Le carbone-suie, ou "black carbon" (BC), est considéré comme le deuxième plus grand contributeur d'origine anthropique au changement climatique, après le dioxyde de carbone, en raison de son importante capacité à absorber la lumière (Bond et al., 2013). Malgré son influence sur le système climatique, les observations pluriannuelles des teneurs atmosphériques de BC demeurent rares, particulièrement en Europe. Cette étude propose une reconstruction nouvelle de la variabilité passée du BC atmosphérique à partir de l'analyse d'une carotte de glace forée au glacier de l'Elbrus (ELB), situé dans le Caucase en Russie. Un analyseur de carbone-suie SP2 (Single Particle Soot Photometer) a été exploité pour l'analyse du BC réfractaire (rBC) sur 153m de carotte de glace couvrant les derniers 140 ans. Un nouveau système analytique couplant un nébuliseur APEX-Q et le SP2, intégré au sein d'un système d'Analyse en Flux Continu, a été développée et a permis d'obtenir un enregistrement unique quasi-continu du rBC. La glace de l'Elbrus révèle une augmentation marquée des teneurs en rBC entre les années 1870 et 1980, suivie d'une diminution des concentrations jusqu'en 2000 environ. Au cours de la dernière décennie, les concentrations en rBC demeurent stables. Parallèlement, une augmentation des niveaux de fond jusqu'en 1980 indique clairement un impact non négligeable des émissions anthropiques sur la charge en BC atmosphérique à des échelles spatiales très larges, et notamment dans la troposphère libre. Une étude fine des inventaires d'émissions de BC disponibles et la modélisation FLEXPART viennent confirmer que l'augmentation forte de rBC depuis 1920 est principalement due aux émissions anthropiques de BC. Une analyse du gradient est-ouest des dépôts de rBC à haute altitude au cours de la dernière décennie a été réalisée, en comparant l'archive récente (10 ans) de l'Elbrus avec deux autres enregistrements provenant du Col du Dôme (CDD, France) et du Colle Gnifetti (CG, Italie). Les concentrations à l'Elbrus se révèlent deux à trois fois supérieures à celles des autres sites, une différence liée à l'intensité plus forte des sources en Europe de l'Est et confirmée par la modélisation FLEXPART. Les combustions de biomasse se trouvent identifiées comme la principale cause de variabilité interannuelle à l'Elbrus en été. Sur les derniers 10 ans, une diminution statistiquement significative des concentrations en rBC dans la neige est détectée au CDD, un résultat qui s'oppose aux observations réalisées à l'Elbrus où une tendance à l'augmentation au cours des périodes estivales est identifiée. Ces tendances, aussi bien CDD et ELB, sont relativement cohérentes avec les inventaires d'émissions de BC anthropiques disponibles. Ces enregistrements nouveaux et continus de rBC dans plusieurs carottes de glace européennes viennent faire progresser notre compréhension des évolutions passées des sources et de la charge atmosphérique du BC en Europe. Ces enregistrements peuvent participer à une meilleure évaluation de l'efficacité des politiques passées et actuelles de réduction des émissions de BC, ainsi qu'à une amélioration des inventaires d'émission. / Black carbon (BC) is considered as the second largest man-made contributor to global warming after carbon dioxide due to its highly light-absorbing ability (Bond et al., 2013). Despite its climatic role, multi-year observations of ambient BC concentrations are scarce, in particular over Europe. In this thesis, we reconstructed past variability of atmospheric BC using an ice core from the Elbrus glacier (ELB), Caucasus in Russia. We have used a single particle soot photometer (SP2) to retrieve refractive BC (rBC) along 153 m of ice core covering the last 140 years. We have developed and validated a novel analytical system coupling of APEX-Q nebulization to SP2 in a Continuous-flow Analysis system to derive a unique quasi-continuous record of rBC. Results reveal a substantial rBC increase since 1870s lasting until 1980, followed by a decrease until ~2000. In the last decade, rBC concentrations remained constant. In parallel, an increase in background concentration until 1980 clearly highlights that anthropogenic BC emissions have substantially affected the atmospheric BC loading on a very large spatial scale, particularly in the free troposphere. A comparison with the estimated BC reaching the ELB site using a BC emission inventory/FLEXPART modeling confirms that the strong rBC increase since around 1920 is mainly due to anthropogenic BC emissions. Analysis of the East-West gradient of rBC deposited in snow over the last decade is investigated comparing the recent archive (10-year) at ELB with two other records from Col du Dôme (CDD), France, and Colle Gnifetti (CG), Italy. Concentrations at ELB are 2-3 times higher than at other sites, which is linked to source intensity in the Eastern part of Europe, as confirmed by the FLEXPART modelling. Biomass burning is identified as a main cause of inter-annual variability at ELB during summer time. Over the last decade, a statistically significant reduction of rBC concentration in snow is found at CDD, opposite to what is found at ELB with an increasing trend observed for summer periods. These trends are also fairly consistent with anthropogenic BC emissions inventories. Availability of continuous records of rBC in European ice cores improved our understanding of past evolution of atmospheric BC over Europe. They can be used to assess efficiency of past and current emission reduction policies and improve emission inventories.
|
276 |
Estudo do papel da Bacia Amazônica na emissão/absorção de dióxido de carbono durante o ano de 2010 / Study of the role of the Amazon Basin in emission/absorption of carbon dioxide during the year 2010DOMINGUES, LUCAS G. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:21Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:18Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
277 |
Estudo de compostos orgânicos voláteis biogênicos nas florestas tropicais da Amazônia, da Guiana Francesa e da Mata Atlântica / Study of biogenic volatile organic compounds in the Amazon, French Guiana and Mata Atlântica Tropical ForestsLOPES, PAULA R.C. 07 January 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-01-07T16:15:17Z
No. of bitstreams: 0 / Made available in DSpace on 2015-01-07T16:15:17Z (GMT). No. of bitstreams: 0 / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
278 |
Estudo da emissão/absorção de Nsub(2)O da bacia Amazônica / Study of the amazon basin Nsub(2)O emission/absorptionCORREIA, CAIO S. de C. 22 December 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-12-22T09:18:25Z
No. of bitstreams: 0 / Made available in DSpace on 2015-12-22T09:18:25Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
279 |
A Study of the Aqueous Phase Processing of Organic Aerosols through Stable Isotope AnalysisJanuary 2018 (has links)
abstract: Atmospheric particulate matter (PM) has a pronounced effect on our climate, and exposure to PM causes negative health outcomes and elevated mortality rates in urban populations. Reactions that occur in fog can form new secondary organic aerosol material from gas-phase species or primary organic aerosols. It is important to understand these reactions, as well as how organic material is scavenged and deposited, so that climate and health effects can be fully assessed. Stable carbon isotopes have been used widely in studying gas- and particle-phase atmospheric chemistry. However, the processing of organic matter by fog has not yet been studied, even though stable isotopes can be used to track all aspects of atmospheric processing, from particle formation, particle scavenging, reactions that form secondary organic aerosol material, and particle deposition. Here, carbon isotope analysis is used for the first time to assess the processing of carbonaceous particles by fog.
This work first compares carbon isotope measurements (δ13C) of particulate matter and fog from locations across the globe to assess how different primary aerosol sources are reflected in the atmosphere. Three field campaigns are then discussed that highlight different aspects of PM formation, composition, and processing. In Tempe, AZ, seasonal and size-dependent differences in the δ13C of total carbon and n-alkanes in PM were studied. δ13C was influenced by seasonal trends, including inversion, transport, population density, and photochemical activity. Variations in δ13C among particle size fractions were caused by sources that generate particles in different size modes.
An analysis of PM from urban and suburban sites in northeastern France shows how both fog and rain can cause measurable changes in the δ13C of PM. The δ13C of PM was consistent over time when no weather events occurred, but particles were isotopically depleted by up to 1.1‰ in the presence of fog due to preferential scavenging of larger isotopically enriched particles. Finally, the δ13C of the dissolved organic carbon in fog collected on the coast of Southern California is discussed. Here, temporal depletion of the δ13C of fog by up to 1.2‰ demonstrates its use in observing the scavenging and deposition of organic PM. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2018
|
280 |
Estudo do papel da Bacia Amazônica na emissão/absorção de dióxido de carbono durante o ano de 2010 / Study of the role of the Amazon Basin in emission/absorption of carbon dioxide during the year 2010DOMINGUES, LUCAS G. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:21Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:18Z (GMT). No. of bitstreams: 0 / A Amazônia armazena em sua floresta na ordem de 95 a 120 PgC de biomassa viva e mais 160 PgC no solo, que podem ser rapidamente liberados para a atmosfera por meio da queima de biomassa e, também, pela mudança do uso da terra. Este estudo foi desenvolvido com o objetivo de elucidar a contribuição da Bacia Amazônica nas emissões de carbono no ano de 2010. A quantificação do CO2 foi realizada por meio da coleta do ar atmosférico utilizando aviões de pequeno porte que descreveram um perfil vertical em quatro locais, estrategicamente posicionado na Bacia Amazônica, e utilizando sistemas semiautomáticos de coleta de ar em 17 ou 12 altitudes diferentes. O Fluxo de emissão/absorção foi calculado pelo método de integração de coluna, que consiste na determinação da concentração de CO2 no perfil vertical, subtraído da concentração de entrada no continente, levando-se em conta o tempo que a massa de ar despende entre a costa e o local de amostragem. Para a determinação da concentração de entrada, foram utilizadas as concentrações medidas pela NOAA nas Ilhas de Ascencion e Barbados e, como traçador de massas de ar, o SF6. Foi encontrado um caráter emissor da Amazônia em território brasileiro para o ano de 2010, em torno de 0,41 PgC, considerando a média ponderada das quatro regiões estudadas, sendo a queima de biomassa a principal responsável. Para a determinação da emissão proveniente da queima de biomassa foi utilizado o CO, como traçador, e a razão CO:CO2. Apesar de possuir um perfil emissor neste ano anormalmente seco, foi possível observar um caráter sumidor de carbono. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
Page generated in 0.025 seconds