• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 7
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 57
  • 37
  • 24
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

SYNTHESIS AND CHARACTERIZATION OF MAGNESIUM - TITANIUM COMPOSITES BY SEVERE PLASTIC DEFORMATION

Alobaid, Baleegh 01 January 2018 (has links)
Magnesium alloys are widely used in engineering applications, including aerospace and automobile industries, due to their desirable properties, such as lower density, high damping capacity, relatively high thermal conductivity, good machinability, and recyclability. Researchers have, therefore, been developing new magnesium materials. However, mechanical and corrosion properties are still limiting many commercial applications of magnesium alloys. In this Ph.D. thesis research, I developed Mg-Ti composite materials to offer some solutions to further improve the mechanical behavior of magnesium, such as titanium-magnesium (Ti-Mg) claddings, Mg-Ti multilayers, and Ti particle enforced Mg alloys. Low cost manufacturing processes, such as hot roll-bonding (RB) and accumulative roll-bonding (ARB) techniques, were used to produce Mg-Ti composites and sheets. The microstructural evolution and mechanical properties of composites were investigated using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), nanoindentation, and tensile tests. In the first part of this study, I investigated the bonding strength of the AZ31/Ti to understand the mechanical properties of Mg/Ti composites. Using a single pass RB process, I fabricated AZ31/Ti multilayers with the thickness reduction in a range of 25% to 55%. The hot-rolled AZ31/Ti multilayers were heat-treated at 400 °C for 6, 12, and 24 hours, respectively, in an argon atmosphere. Tensile-shear tests were designed to measure the bonding strength between AZ31/Ti multilayers. Furthermore, the experimental results revealed good bonding of the AZ31/Ti multilayers without forming any intermetallic compounds in the as-rolled and heat-treated AZ31/Ti multilayers. The good bonding between Ti and AZ31 is the result of diffusion bonding whose thickness increases with increasing heat-treatment time and thickness reduction. The shear strength of the Ti/AZ31 multilayer increases with increasing bonding layer thickness. In the second part of this study, I characterized the microstructure and texture of three-layered Ti/AZ31/Ti clad sheets which were produced by single-pass hot rolling with a reduction of thickness 38% (sheet I) and 50% (sheet II). The AZ31 layer in sheets I and II exhibited shear bands and tensile twins {1012}⟨1001⟩ . The shear bands acted as local strain concentration areas which led to failure of the clad sheets with limited elongation. Heat treatment caused changes in the microstructure and mechanical properties of clad sheets due to static recrystallization (SRX) on twins and shear bands in the AZ31 layer. Recrystallized grains usually randomize the texture which causes weaken the strong deformed (0001) basal texture. Twins served as nucleation sites for grain growth during SRX. Tensile tests at room temperature showed significantly improved ductility of the clad sheets after heat treatment at 400°C for 12h. The results showed that the mechanical properties of clad sheets II are better than clad sheet I: The clad sheet II shows elongation 13% and 35% along the rolling direction (RD) for as-rolled and annealed clad sheet, respectively whereas the clad sheet I shows elongation 10% and 22% along RD for as-rolled and annealed clad sheet, respectively. In the final part of this study, I examined the effects of dispersed pure titanium particles (150 mesh) with 0, 2.3, 3.5, 4.9, and 8.6 wt. % on the microstructure and mechanical properties of AZ31-Mg alloy matrix. Mg-Ti composites were processed through three accumulative roll bonding (ARB) steps using thickness reductions of 50% in each pass followed by heat treatment at 400 °C for 12 h in an argon atmosphere. ARB is an efficient process to fabricate Mg-Ti composites. Mechanical properties of Mg- 0Ti and Mg-2.3Ti composite were enhanced by ~ 8% and 13 % in yield strength and ~ 30% and 32 % in ultimate tensile strength, respectively. Meanwhile, the elongation of the composites were decreased by 63% and 70%, respectively. After heat treatment, the results showed a decrease in yield strength and increase in elongation to fracture. The mechanical properties of the Mg-0 and Mg-2.3Ti composite were enhanced: ultimate tensile strength by 9% and 7%, and elongation by 40% and 67%, while the yield strength was decreased by 28% and 36% compared with the initial AZ31. Enhancements of strength and ductility were the results of two mechanisms: a random matrix texture by ARB and ductile titanium particle dispersion.
42

Superplastic Deformation Behaviour Of AZ31 Magnesium Alloy

Panicker, Radhakrishna M R 08 1900 (has links)
Superplastic deformation behaviour of AZ31 magnesium alloy having initial grain sizes 8, 11 and 17μm alloy was investigated at 673 K with initial strain rates ranging from 1x10-2 to 1x10-4 s-1. Mechanical data on fine grained AZ31 alloy with grain sizes 8 and 11 μm indicated a transition in deformation mechanisms. The strain rate sensitivity, m ~ 0.5 at low strain rates and m ~ 0.2 at high strain rates which suggest GBS and dislocation slip as the corresponding deformation mechanism. For coarse grained alloy having grain size 17 μm, m < 0.4 at low strain rates and ~ 0.2 at high strain rates, suggesting dislocation slip as the deformation mechanism. A superplastic maximum elongation of ~ 475% was observed for 8 μm alloy at low rate of deformation. At high strain rates, the deformation was non-superplastic for fine and coarse grained alloys. The contribution of GBS to total strain, ξ in the low strain rate regime was evaluated to be 50 – 60%, for both low and high elongation. EBSD studies indicated the maintenance of high fraction of high angle boundaries up to true strain of ~ 0.88 and a reduction in texture intensity. These observations show GBS as the dominant deformation mechanism for fine grained alloy. At higher strain rate, ξ was estimated to be 30%. Fraction of high angle boundaries was reduced and [0001] direction of grains was found to be rotated towards the tensile direction, suggesting dislocation slip. Based on mechanical data, flow localization and cavitation studies; the failure of the material during high rates of deformation was mainly due to flow localization. Extensive cavitation along with more uniform flow at a lower strain rate regime suggests the failure due to the cavity interlinkage and coalescence. The present GBS data are consistent with the previous relevant data in fine grained Mg based alloys in the low strain rate regime. The GBS data obtained in the dislocation regime in the present study are also in agreement with that of the previous investigations in fine grained Mg alloys.
43

INTEGRATED APPROACH TO THE SUPERPLASTIC FORMING OF MAGNESIUM ALLOYS

Abu-Farha, Fadi K. 01 January 2007 (has links)
The economical and environmental issues associated with fossil fuels have been urging the automotive industry to cut the fuel consumption and exhaust emission levels, mainly by reducing the weight of vehicles. However, customers increasing demands for safer, more powerful and luxurious vehicles have been adding more weight to the various categories of vehicles, even the smallest ones. Leading car manufacturers have shown that significant weight reduction, yet satisfying the growing demands of customers, would not be feasible without the extensive use of lightweight materials. Magnesium is the lightest constructional metal on earth, offering a great potential for weight-savings. However, magnesium and its alloys exhibit inferior ductility at low temperatures, limiting their practical sheet metal applications. Interestingly, some magnesium alloys exhibit superplastic behaviour at elevated temperatures; mirrored by the extraordinarily large ductility, surpassing that of conventional steels and aluminium alloys. Superplastic forming technique is the process used to form materials of such nature, having the ability to deliver highly-profiled, yet very uniform sheet-metal products, in one single stage. Despite the several attractions, the technique is not widely-used because of a number of issues and obstacles. This study aims at advancing the superplastic forming technique, and offering it as an efficient process for broader utilisation of magnesium alloys for sheet metal applications. The focus is primarily directed to the AZ31 magnesium alloy, since it is commercially available in sheet form, possesses good mechanical properties and high strength/weight ratio. A general multi-axial anisotropic microstructure-based constitutive model that describes the deformation behaviour during superplastic forming is first developed. To calibrate the model for the AZ31 magnesium alloy, systematic uniaxial and biaxial stretching tests are carried out over wide-ranging conditions, using 3 specially-designed fixtures. In a collaborative effort thereafter, the calibrated constitutive model is fed into a FE code in conjunction with a stability criterion, in order to accurately simulate, control and ultimately optimise the superplastic forming process. Special pneumatic bulge forming setup is used to validate some proposed optimisation schemes, by forming sheets into dies of various geometries. Finally, the materials post-superplastic-forming properties are investigated systematically, based on geometrical, mechanical and microstructural measures.
44

Transient liquid phase (TLP) brazing of Mg–AZ31 and Ti–6Al–4V using Ni and Cu sandwich foils

Atieh, A.M., Khan, Tahir I. 21 February 2014 (has links)
No / Transient liquid phase (TLP) brazing of Mg–AZ31 alloy and Ti–6Al–4V alloy was performed using double Ni and Cu sandwich foils. Two configurations were tested; first, Mg–AZ31/Cu–Ni/Ti–6Al–4V and second, Mg–AZ31/Ni–Cu/Ti–6Al–4V. The effect of set-up configuration of the foils on microstructural developments, mechanical properties and mechanism of joint formation was examined. The results showed that different reaction layers formed inside the joint region depending on the configuration chosen. The formation of e phase (Mg), r (CuMg2), d (Mg2Ni) and Mg3AlNi2 was observed in both configurations. Maximum shear strength obtained was 57 MPa for Mg–AZ31/Ni–Cu/Ti–6Al–4V configuration and in both configurations, the increase in bonding time resulted in a decrease in joint strength to 13 MPa. The mechanism of joint formation includes three stages; solid state diffusion, dissolution and widening of the joint, and isothermal solidification. / The authors would like to acknowledge The German Jordanian University (GJU), and NSERC Canada for the financial support for this research.
45

Material interactions in a novel Refill Friction Stir Spot Welding approach to joining Al-Al and Al-Mg automotive sheets

Al-Zubaidy, Basem January 2017 (has links)
Refill Friction Stir Spot Welding (RFSSW) is a new solid-state joining technology, which is suitable for joining similar and dissimilar overlap sheets connections, particularly in aluminium and magnesium alloys. This welding method is expected to have wide applications in joining of body parts in the automotive industry. In the present study, RFSSW has been used to join 1.0 mm gauge sheets of two material combinations: similar AA6111-T4 automotive aluminium alloy joints and a dissimilar aluminium AA6111-T4 to magnesium AZ31-H24 alloy combinations. The performance of the joints was investigated in terms of the effect of the welding parameters (including tool rotation rate, sleeve plunge depth, and welding time etc.) to improve current understanding and allow optimisation of the process for short welding-cycles when joining similar and dissimilar light alloys. The results of the investigations on similar AA6111 welds showed the ability to use a wide window of process parameters that resulted in joints with a successfully refilled keyhole and flat weld surface, even when using a welding time as short as 0.5 s. The joints in the as-welded condition showed strengths as high as 4.2 kN, when using welding parameters of 1500 rpm, 1.0 mm with a range of welding times from 0.55 to 2.0 s. All joints showed a nugget pull-out failure mode when using a sleeve plunge depth of 0.8 mm or more, as a result of increasing the joint area. The strength of the joints further improved and reached peak loads of 5.15 and 6.43 kN after natural and artificial ageing, respectively, for welds produced using optimised welding parameters of a 2500 rpm tool rotation rate, a 1.5 s welding time and a 1.0 mm plunge. This improvement in strength resulted from the improvement in the local mechanical properties in the HAZ and other regions, which results from a minimal HAZ due to the rapid weld cycle and the re-precipitation of GPZs and clustering on natural ageing, or β on artificial ageing. A modification to the RFSSW process was developed in this project to solve the problems faced when dissimilar welding Mg to Al. This modified process involved adding a final brief pin plunge stage to consolidate refill defects and it was successful in producing nearly defect-free joints with improved mechanical properties, using a wide range of the process parameters. The average peak load of the joints increased with increasing tool rotation rate, to reach a maximum value at 2500 rpm due to eliminating the weld defects by increasing the material plasticity. However, increasing the tool rotation rate further to 2800 rpm led to a decrease in the average peak failure load due to eutectic melting at the weld interface. The optimum welding condition was thus found to be: 2500 rpm, 1.0 s, and 1.0 mm, which gave an average peak failure load of 2.4 kN and average fracture energy of 1.3 kN.mm. These values represent an improvement of about 10 % and 27 %, respectively, compared to welds produced with the conventional RFSSW process, and about 112 % and 78 % of the Mg-Mg similar joints produced using the same welding conditions. A FE model developed in this project was successful in increasing understanding of the behaviour of the RFSSW joints when subjected to lap tensile-shear loading. The stress and strain distribution in the modelled samples showed that the highest concentration occurring in the region of the confluence of the SZ with the two sheets. With increasing extension, these regions of highest stress and strain propagated to the outer surfaces of the two sheets and then annularly around the weld nugget. This annular ring of high strain concentration agreed well with the failure path and results in the full plug pull-out fracture mode shown by the experimentally tested samples. The predicted force-extension curves showed high agreement with the experimental results, especially when including the effect of the hook defect and correction of compliance in the experimental results.
46

Příprava a charakterizace konverzních fluoridových povlaků na biodegradabilních hořčíkových slitinách / Preparation and Characterization of Fluoride Conversion Coatings on Biodegradable Magnesium Alloys

Drábiková, Juliána January 2018 (has links)
The submitted work is aimed at the unconventional fluoride conversation coating preparation on the AZ31, AZ61, ZE10 and ZE41 magnesium alloys by their immersion in Na[BF4] molten salt. The influence of the preparation parameters (such as temperature and time) on the quality of the fluoride conversion coating is investigated. Methods of light and scanning electron microscopy were used for the evaluation of morphology, chemical composition and thickness of the coating. Short and long-term corrosion tests were executed to analyze the corrosion performance in simulated body fluid solution at 37 ± 2 °C with and without the fluoride conversion coating. The short-term behavior was evaluated by potentiodynamic tests, namely by the linear polarization. Long-term performance was assessed by electrochemical impedance spectroscopy or immersion tests. The coating preparation parameters influence on the character of the formed fluoride conversion coating was defined based on the obtained results. The next part of the thesis deals with the description of the possible mechanism of formation and kinetics of growth of the unconventional fluoride conversion coating on the selected AZ61 magnesium alloy. In this part, further detailed analyses were carried out to investigate the microstructure and chemical composition of the fluoride conversion coating using focused ion beam, transmission electron microscopy and X-ray photoelectron spectroscopy.
47

Příprava povlaků na bázi Ni-P na tvářených hořčíkových slitinách / Ni-P based coatings preparation on wrought magnesium alloys

Buchtík, Martin January 2016 (has links)
The aim of this diploma thesis was summary of all steps and knowledge necessary to deposition of quality Ni-P coatings deposited on wrought magnesium alloys AZ31 and AZ61. There is the treatise about wrought magnesium alloys AZ31 and AZ61. Thesis includes its phase composition in the theoretical part. There are given its possible processing methods too. Next, there is desribed the mechanism of deposition of Ni-P coatings, components required to electroless deposition and factors affecting the quality and properties of these coatings. The theoretical part is ended by serie of reviews. Authors of these reviews deal with pretreatment of substrates, preparation, characterization and measuring of mechanical, structure and corrosion properties of deposited coatings. The optimalization of pretreatment, parametres and composition of nickel bath suitable for magnesium alloys is described in experimental part. The microstructure, present interlayer between substrate and Ni-P coating and chemical composition of deposited coatings was observed and measured by optical and electron microscopy. The mechanical characterization of Ni-P coatings was performed by microhardness tester.
48

Únavové charakteristiky hořčíkové slitiny AZ31 po korozní degradaci / Fatigue properties of magnesium alloy AZ31 after corrosion degradation

Horynová, Miroslava January 2011 (has links)
The present study is focussed on assessment of cyclic deformation response and fatigue behaviour of bare and precorroded AZ31 magnesium alloys. Corrosion degradation was carried out in a salt spray fog (5% solution of sodium chloride) for 480 and 1000 hrs. Microstructure, mechanical properties, low- and high-cycle fatigue behaviour of experimental material in as-cast condition has been evaluated. Furthermore, the corrosion behaviour of material has been investigated. The fatigue tests have been performed using precorroded specimens to assess influence of corrosion degradation on cyclic deformation response and on low- and high-cycle fatigue behaviour. Influence of local corrosion degradation on initiation of fatigue cracks has been studied.
49

Únavové chování hořčíkových slitin AZ31 a AZ61 / Fatigue Behaviour of AZ31 and AZ61 Magnesium Alloys

Gejdoš, Pavel January 2014 (has links)
This doctoral thesis deals with the fatigue behaviour of AZ31 and AZ61 magnesium alloy casted by advanced methods of casting squeeze casting. Based on the regression functions and measured fatigue data were determined fatigue characteristics of these alloys. The work also extends into the area of fatigue cracks in the AZ31 alloy. Were measured fatigue crack propagation rate on modified cylindrical specimens. The paper also outlines the possibilities for describing the fatigue behaviour of AZ61 alloy in extremely low-cycle fatigue.
50

Experimental analysis and numerical fatigue modeling for magnesium sheet metals

Dallmeier, Johannes 16 September 2016 (has links) (PDF)
The desire for energy and resource savings brings magnesium alloys as lightweight materials with high specific strength more and more into the focus. Most structural components are subjected to cyclic loading. In the course of computer aided product development, a numerical prediction of the fatigue life under these conditions must be provided. For this reason, the mechanical properties of the considered material must be examined in detail. Wrought magnesium semifinished products, e.g. magnesium sheet metals, typically reveal strong basal textures and thus, the mechanical behavior considerably differs from that of the well-established magnesium die castings. Magnesium sheet metals reveal a distinct difference in the tensile and compressive yield stress, leading to non-symmetric sigmoidal hysteresis loops within the elasto-plastic load range. These unusual hysteresis shapes are caused by cyclic twinning and detwinning. Furthermore, wrought magnesium alloys reveal pseudoelastic behavior, leading to nonlinear unloading curves. Another interesting effect is the formation of local twin bands during compressive loading. Nevertheless, only little information can be found on the numerical fatigue analysis of wrought magnesium alloys up to now. The aim of this thesis is the investigation of the mechanical properties of wrought magnesium alloys and the development of an appropriate fatigue model. For this purpose, twin roll cast AM50 as well as AZ31B sheet metals and extruded ME21 sheet metals were used. Mechanical tests were carried out to present a comprehensive overview of the quasi-static and cyclic material behavior. The microstructure was captured on sheet metals before and after loading to evaluate the correlation between the microstructure, the texture, and the mechanical properties. Stress- and strain-controlled loading ratios and strain-controlled experiments with variable amplitudes were performed. Tests were carried out along and transverse to the manufacturing direction to consider the influence of the anisotropy. Special focus was given to sigmoidal hysteresis loops and their influence on the fatigue life. A detailed numerical description of hysteresis loops is necessary for numerical fatigue analyses. For this, a one-dimensional phenomenological model was developed for elasto-plastic strain-controlled constant and variable amplitude loading. This model consists of a three-component equation, which considers elastic, plastic, and pseudoelastic strain components. Considering different magnesium alloys, good correlation is reached between numerically and experimentally determined hysteresis loops by means of different constant and variable amplitude load-time functions. For a numerical fatigue life analysis, an energy based fatigue parameter has been developed. It is denoted by “combined strain energy density per cycle” and consists of a summation of the plastic strain energy density per cycle and the 25 % weighted tensile elastic strain energy density per cycle. The weighting represents the material specific mean stress sensitivity. Applying the energy based fatigue parameter on modeled hysteresis loops, the fatigue life is predicted adequately for constant and variable amplitude loading including mean strain and mean stress effects. The combined strain energy density per cycle achieves significantly better results in comparison to conventional fatigue models such as the Smith-Watson-Topper model. The developed phenomenological model in combination with the combined strain energy density per cycle is able to carry out numerical fatigue life analyses on magnesium sheet metals.

Page generated in 0.038 seconds