Spelling suggestions: "subject:"access protocols"" "subject:"cccess protocols""
1 |
ON PACKET SCHEDULING STRATEGIES FOR AD HOC NETWORKSKAKARAPARTHI, RAVIKIRAN 11 October 2001 (has links)
No description available.
|
2 |
Reliable communication under mismatched decodingScarlett, Jonathan Mark January 2014 (has links)
No description available.
|
3 |
Wireless multiple access communication over collision frequency shift keyed channelsXia, Chen. January 1900 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2007. / Title from title screen (site viewed Dec. 5, 2007). PDF text: xvi, 142 p. : ill. ; 5 Mb. UMI publication number: AAT 3273188. Includes bibliographical references. Also available in microfilm and microfiche formats.
|
4 |
Performance and control of CSMA wireless networks. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
Motivated by the fact that the contention graph associated with ICN is a Markov random field (MRF) with respect to the probability distribution of its system states, and that the belief propagation algorithm (BP) is an efficient way to solve "inference" problems in graphical models such as MRF, we study how to apply BP algorithms to the analysis and control of CSMA wireless networks. We investigate three applications: (1) computation of link throughputs given link access intensities; (2) computation of link access intensities required to meet target link throughputs; and (3) optimization of network utility via the control of link access intensities. We show that BP solves the three problems with exact results in tree networks and has manageable computation errors in a network with loopy contention graph. In particular, we show how a generalized version of BP, GBP, can be designed to solve the three problems above with higher accuracy. Importantly, we show how the BP and GBP algorithms can be implemented in a distributed manner, making them useful in practical CSMA network operation. / The above studies focus on computation and control of "equilibrium" link throughputs. Besides throughputs, an important performance measure in CSMA networks is the propensity for starvation. In this thesis, we show that links in CSMA wireless networks are particularly susceptible to "temporal" starvation. Specifically, certain links may have good equilibrium throughputs, yet they can still receive no throughput for extended periods from time to time. We develop a "trap theory" to analyze temporal throughput fluctuations. The trap theory serves two functions. First, it allows us to derive new mathematical results that shed light on the transient behavior of CSMA networks. Second, we can develop automated analytical tools for computing the "degrees of starvation" for CSMA networks to aid network design. We believe that the ability to identify and characterize temporal starvation as established in this thesis will serve as an important first step toward the design of effective remedies for it. / This thesis investigates the performance and control of CSMA wireless networks. To this end, an analytical model of CSMA wireless networks that captures the essence of their operation is important. We propose an Ideal CSMA Network (ICN) model to characterize the dynamic of the interactions and dependency of links in CSMA wireless networks. This model allows us to address various issues related to performance and control of CSMA networks. / We show that the throughput distributions of links in ICN can be computed from a continuous-time Markov chain and are insensitive to the distributions of the transmission time (packet duration) and the backoff countdown time in the CSMA MAC protocol given the ratio of their means rho, referred to as the access intensity. An outcome of the ICN model is a Back-of-the-Envelope (BoE) approximate computation method that allows us to bypass complicated stochastic analysis to compute link throughputs in many network configurations quickly. The BoE computation method emerges from ICN in the limit rho → infinity. Our results indicate that BoE is a good approximation technique for modest-size networks such as those typically seen in 802.11 deployments. Beyond serving as the foundation for BoE, the theoretical framework of ICN is also a foundation for understanding and optimization of large CSMA networks. / Kai, Caihong. / Adviser: Soung Chang Liew. / Source: Dissertation Abstracts International, Volume: 73-03, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 180-183). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
5 |
Protocol sequences for the collision channel without feedback. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
At last, we focus on the detection problem in the protocol sequence design. The objective is to construct user-detectable sequences that allow any active user be detected by the receiver via some algorithm within some bounded delay if and only if it has become active. / First of all, in order to minimize variation of throughput due to delay offsets, we investigate protocol sequences whose pairwise Hamming cross-correlation is a constant for all possible relative offsets. It can be viewed as a generalization of completely shift-invariant sequences, which can achieve the zero-variation in throughput over a slot-synchronized channel. / Provided that the number of active users is smaller than the number of potential users, strongly conflict-avoiding codes are introduced with the non-blocking property in the asynchronous channel. It can be viewed as an extension of completely irrepressible sequences. / The second one is a non-blocking property which ensures that each active user can successfully transmit information at least once in its each active period. With the assumption that all potential users may be active simultaneously, user-irrepressible sequences and completely irrepressible sequences are studied respectively for different level of synchronization, to support the non-blocking property. / This thesis is based on Massey's model on collision channels without feedback, in which collided packets are considered unrecoverable. A collision occurs if two or more packets are partially or totally overlapped. Each potential user is assigned a deterministic zero-one pattern, called the protocol sequence, and sends a packet if and only if it is active and the value of the sequence is equal to one. Due to lack of feedback, the beginning of the protocol sequences cannot be synchronized and variation in relative offsets is inevitable. It further yields variation in throughput. / We study the design of protocol sequences from three different perspectives. / Zhang, Yijin. / Adviser: Wing Shing Wong. / Source: Dissertation Abstracts International, Volume: 73-03, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 1116). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
6 |
Topics in resource allocation in wireless sensor networksLi, Chaofeng (James) January 2008 (has links)
The focus of this thesis is on the resource allocation problems in wireless sensor and cooperative networks. Typically, wireless sensor networks operate with limited energy and bandwidth are often required to meet some specified Quality-of-Service (QoS) constraints. The ultimate objective for the majority of the problems considered in this thesis is to save battery energy and maximize the network lifetime. / In the first part of this thesis, we employ complex mathematical models to emulate a variety of power drains in wireless sensor nodes. In the first instance, we address a lifetime optimization problem of a wireless TDMA/CDMA sensor network for joint transmit power and rate allocations. The effect of fast fading is captured by including rate outage and link outage constraints on each link. After that, a single-hop wireless sensor network is deployed for a certain application - to estimate a Gaussian source within a pre-specified distortion threshold. In this part, we consider lifetime maximization, in different multiple access protocols such as TDMA, an interference limited non-orthogonal multiple access (NOMA) and an idealized Gaussian multiple access channel. This problem is further studied in a multi-hop scenario where sensing and receiving powers are also included in addition to transmission power. Finally, we investigate a balancing problem between the source coding and transmission power for video wireless sensor systems where the sensor node is required to send the collected video clips, through wireless media, to a base station within a corresponding distortion threshold. All these energy saving and lifetime optimization problems in sensor networks can be formulated via nonlinear nonconvex optimization problems, which are generally hard to solve. However, with favourable variable substitution and reasonable approximation, most of these problems are shown to be convex. The only exception is the Gaussian source esitmation problem in NOMA scenario for which we provide a simple successive convex approximation based algorithm for the NOMA case that converges fast to a suboptimal solution. / In the second part of the thesis, we propose an optimal power allocation scheme with a K-block coding delay constraint on data transmission using a three node cooperative relay network assuming a block fading channel model. Channel information is fed back to the transmitter only in a causal fashion, so that the optimal power allocation strategy is only based on the current and past channel gains. We consider the two simplest schemes for information transmission using a three node (a source, a relay and a destination) relay network, namely the amplify and forward (AF) and decode and forward (DF) protocols. We use the dynamic programming methodology to solve the (K-block delay constrained) expected capacity maximization problem and the outage probability minimization problem with a short term sum power (total transmission power of the source and the relay) constraint. / The main contribution of the thesis is a comprehensive suite of power minimization and lifetime maximization methods that can be used in wireless sensor networks. We present several such applications and extensive numerical examples at the end of each chapter.
|
7 |
Outage limited cooperative channels protocols and analysis /Azarian Yazdi, Kambiz, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 175-177).
|
8 |
Adaptive Cooperative Awareness Messaging for Enhanced Overtaking Assistance on Rural RoadsBöhm, Annette, Jonsson, Magnus, Uhlemann, Elisabeth January 2011 (has links)
Cooperative traffic safety applications such as lane change or overtaking assistance have the potential to reduce the number of road fatalities. Many emerging traffic safety applications are based on IEEE 802.11p and periodic position messages, so-called cooperative awareness messages (CAM) being broadcasted by all vehicles. In Europe, ETSI defines a periodic report rate of 2 Hz for CAMs. Although a high report rate is the key to early hazard detection, the 2 Hz rate has been chosen to avoid congestion in settings where the vehicle density is high, e.g., on major highways and in urban scenarios. However, on rural roads with a limited number of communicating vehicles, a report rate of 2 Hz leads to unnecessary delay in cooperative awareness. By adapting the CAM report rate depending on the specific application and road traffic density, and by making use of the priority levels provided by the 802.11p quality of service mechanism, we show that hazards can be detected earlier and the available bandwidth is used more efficiently, while not overexploiting the network resources. / <p>©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</p><p></p><p>Category number CFP11VTF-ART; Code 87844</p>
|
9 |
CSMA with Implicit Scheduling through State-keeping: A Distributed MAC Framework for QoS in Broadcast LANsKangude, Shantanu 13 May 2004 (has links)
Channel access fairness and efficiency in capacity utilization are the two main objectives for Quality of Service (QoS) specific to Medium Access Control (MAC) protocols in computer networks. For bursty and unpredictable traffic in networks, fairness and efficiency involve a mutual tradeoff with the currently popular QoS mechanisms. We propose a QoS MAC framework for carrier sensing multiple access (CSMA) networks, that achieves fairness with improved efficiency through extensive state-keeping based on the MAC evolution. This CSMA with Implicit Scheduling through State-keeping (CSMA/ISS) framework involves the tracking of traffic arrival at active nodes, the nodes that need channel access frequently. It also involves implicit channel access grants to different active nodes according to their estimated queue backlogs and the fair scheduling requirements. These methods save channel capacity that may otherwise be required for disseminating the access requirements of various nodes, and their access rights according to fairness rules. A static, hierarchical, and weighted fair access scheme is designed in CSMA/ISS by allowing repeated rounds of access that are weighted fairly according to requirements. Weighted fairness across classes is achieved by invoking channel access for each traffic class in a round as many times as its weight. Within each class, all active nodes are allowed equal access through in-order channel access based on a looped list of active nodes. Although CSMA/ISS is proposed as a distributed control framework for efficiency, it may also be employed in central control protocols. It may also be adapted to different types of CSMA networks, both wireless and wired, by an appropriate choice of the underlying classical access mechanism. The CSMA/ISS framework was modeled and simulated as a QoS capable MAC protocol for a wired fully connected local network environment. We present the CSMA/ISS framework, the example implementation, and the results of performance evaluation of the example implementation. Significant performance improvements were observed, and the memory and processing trade-off was found to be low to moderate.
|
10 |
Topics in resource allocation in wireless sensor networksLi, Chaofeng (James) January 2008 (has links)
The focus of this thesis is on the resource allocation problems in wireless sensor and cooperative networks. Typically, wireless sensor networks operate with limited energy and bandwidth are often required to meet some specified Quality-of-Service (QoS) constraints. The ultimate objective for the majority of the problems considered in this thesis is to save battery energy and maximize the network lifetime. / In the first part of this thesis, we employ complex mathematical models to emulate a variety of power drains in wireless sensor nodes. In the first instance, we address a lifetime optimization problem of a wireless TDMA/CDMA sensor network for joint transmit power and rate allocations. The effect of fast fading is captured by including rate outage and link outage constraints on each link. After that, a single-hop wireless sensor network is deployed for a certain application - to estimate a Gaussian source within a pre-specified distortion threshold. In this part, we consider lifetime maximization, in different multiple access protocols such as TDMA, an interference limited non-orthogonal multiple access (NOMA) and an idealized Gaussian multiple access channel. This problem is further studied in a multi-hop scenario where sensing and receiving powers are also included in addition to transmission power. Finally, we investigate a balancing problem between the source coding and transmission power for video wireless sensor systems where the sensor node is required to send the collected video clips, through wireless media, to a base station within a corresponding distortion threshold. All these energy saving and lifetime optimization problems in sensor networks can be formulated via nonlinear nonconvex optimization problems, which are generally hard to solve. However, with favourable variable substitution and reasonable approximation, most of these problems are shown to be convex. The only exception is the Gaussian source esitmation problem in NOMA scenario for which we provide a simple successive convex approximation based algorithm for the NOMA case that converges fast to a suboptimal solution. / In the second part of the thesis, we propose an optimal power allocation scheme with a K-block coding delay constraint on data transmission using a three node cooperative relay network assuming a block fading channel model. Channel information is fed back to the transmitter only in a causal fashion, so that the optimal power allocation strategy is only based on the current and past channel gains. We consider the two simplest schemes for information transmission using a three node (a source, a relay and a destination) relay network, namely the amplify and forward (AF) and decode and forward (DF) protocols. We use the dynamic programming methodology to solve the (K-block delay constrained) expected capacity maximization problem and the outage probability minimization problem with a short term sum power (total transmission power of the source and the relay) constraint. / The main contribution of the thesis is a comprehensive suite of power minimization and lifetime maximization methods that can be used in wireless sensor networks. We present several such applications and extensive numerical examples at the end of each chapter.
|
Page generated in 0.0692 seconds