• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 519
  • 119
  • 66
  • 61
  • 50
  • 42
  • 17
  • 15
  • 12
  • 12
  • 7
  • 6
  • 6
  • 4
  • 4
  • Tagged with
  • 1103
  • 1103
  • 590
  • 374
  • 304
  • 287
  • 238
  • 230
  • 158
  • 149
  • 138
  • 106
  • 103
  • 99
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Selbstorganisierende Systemarchitekturen - Ad-hoc-Netze

Rabel, Matthias, January 2007 (has links)
Ulm, Univ. Diss., 2006.
42

Robust and low-communication geographic routing for wireless ad hoc networks

Witt, Matthias January 2008 (has links)
Zugl.: Hamburg, Techn. Univ., Diss., 2008
43

Haftung für Ad-hoc-Publizität in Deutschland und der Schweiz Ein vergleichender Grundriss unter besonderer Berücksichtigung der verfügbaren Haftungsgrundlagen und deren funktionaler Aspekte /

Hotz, Florian. January 2008 (has links) (PDF)
Master-Arbeit Univ. St. Gallen, 2008.
44

Průběžná evaluace Strategického plánu města Modřice

Rejnuš, Jakub January 2013 (has links)
No description available.
45

Secure and efficient wireless ad hoc networking

Khabbazian, Majid 11 1900 (has links)
Wireless ad hoc networks have been emerged to support applications, in which it is required/desired to have wireless ommunications among a variety of devices without relying on any infrastructure or central managements. In ad hoc networks, wireless devices, simply called nodes, have limited transmission range. Therefore, each node can directly communicate with only those within its transmission range and requires other nodes to act as routers in order to communicate with out-of-range estinations. One of the fundamental operations in ad hoc networks is broadcasting, where a node sends a message to all other nodes in the network. This can be achieved through flooding, in which every node transmits the first copy of the received message. However, flooding can impose a large number of redundant transmissions, which can result in significant waste of constrained resources such as bandwidth and battery power. One of the contributions of this work is to propose efficient broadcast algorithms which can significantly reduce the number of redundant transmissions. We also consider some of the security issues of ad hoc networks. In particular, we carefully analyze the effect of the wormhole attack, which is one of the most severe threats against ad hoc networks. We also propose a countermeasure, which is an improvement over the existing timing-based solutions against the wormhole attack. Finally, in the last chapter, we propose novel point compression techniques which can be used in Elliptic Curve Cryptography (ECC). ECC can provide the same level of security as other public key cryptosystems (such as RSA) with substantially smaller key sizes. Smaller keys can result in smaller system parameters, bandwidth savings, faster implementations and lower power consumption. These advantages make ECC interesting for ad hoc networks with restricted devices. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
46

A TCP ANALYSIS: IMPACT OF RECEIVER PERCEIVED INFORMATION ON THE PERFORMANCE OF TCP OVER Ad Hoc NETWORKS

GUPTA, RAHUL January 2002 (has links)
No description available.
47

Lightweight Technology Functions for Small Ad Hoc Team Communication

Bernal, Fernando 29 September 2009 (has links)
No description available.
48

Development of a Monte Carlo ad hoc routing protocol for connectivity improvement

Perold, Philippus Rudolf 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / Please refer to full text for abstract.
49

Performance Evaluation Of Routing Protocols In Wireless Ad Hoc Networks With Service Differentiation

Yilmaz, Semra 01 January 2003 (has links) (PDF)
An ad hoc network is a collection of wireless mobile nodes dynamically forming a temporary network without the use of any fixed network infrastructure or centralized administration. Due to the limitations in the wireless environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination. In order to enable communication within the network, a routing protocol is needed to discover routes between nodes. The primary goal of ad hoc network routing protocols is to establish routes between node pairs so that messages may be delivered reliably and in a timely manner. The basic access method in IEEE 802.11 ad hoc networks is the Distributed Coordination Function (DCF), which provides a fair medium access. Enhanced Distributed Coordination Function (EDCF) has been developed to provide service differentiation among different traffic flows. In this thesis, we investigate the performance of the EDCF with routing protocols / Direct Sequenced Distance Vector (DSDV) and Dynamic Source Routing (DSR) by simulations.
50

Online ad hoc distributed traffic simulation with optimistic execution

Suh, Wonho 03 July 2012 (has links)
As roadside and in-vehicle sensors are deployed under the Connected Vehicle Research program (formerly known as Vehicle Infrastructure Integration initiative and Intellidrive), an increasing variety of traffic data is becoming available in real time. This real time traffic data is shared among vehicles and between vehicles and traffic management centers through wireless communication. This course of events creates an opportunity for mobile computing and online traffic simulations. However, online traffic simulations require faster than real time running speed with high simulation resolution, since the purpose of the simulations is to provide immediate future traffic forecast based on real time traffic data. However, simulating at high resolution is often too computationally intensive to process a large scale network on a single processor in real time. To mitigate this limitation an online ad hoc distributed simulation with optimistic execution is proposed in this study. The objective of this study is to develop an online traffic simulation system based on an ad hoc distributed simulation with optimistic execution. In this system, data collection, processing, and simulations are performed in a distributed fashion. Each individual simulator models the current traffic conditions of its local vicinity focusing only on its area of interest, without modeling other less relevant areas. Collectively, a central server coordinates the overall simulations with an optimistic execution technique and provides a predictive model of traffic conditions in large areas by combining simulations geographically spread over large areas. This distributed approach increases computing capacity of the entire system and speed of execution. The proposed model manages the distributed network, synchronizes the predictions among simulators, and resolves simulation output conflicts. Proper feedback allows each simulator to have accurate input data and eventually produce predictions close to reality. Such a system could provide both more up-to-date and robust predictions than that offered by centralized simulations within a single transportation management center. As these systems evolve, the online traffic predictions can be used in surface transportation management and travelers will benefit from more accurate and reliable traffic forecast.

Page generated in 0.0507 seconds