• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 23
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 121
  • 121
  • 54
  • 50
  • 27
  • 25
  • 21
  • 18
  • 14
  • 13
  • 11
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Channel Modeling Applied to Robust Automatic Speech Recognition

Sklar, Alexander Gabriel 01 January 2007 (has links)
In automatic speech recognition systems (ASRs), training is a critical phase to the system?s success. Communication media, either analog (such as analog landline phones) or digital (VoIP) distort the speaker?s speech signal often in very complex ways: linear distortion occurs in all channels, either in the magnitude or phase spectrum. Non-linear but time-invariant distortion will always appear in all real systems. In digital systems we also have network effects which will produce packet losses and delays and repeated packets. Finally, one cannot really assert what path a signal will take, and so having error or distortion in between is almost a certainty. The channel introduces an acoustical mismatch between the speaker's signal and the trained data in the ASR, which results in poor recognition performance. The approach so far, has been to try to undo the havoc produced by the channels, i.e. compensate for the channel's behavior. In this thesis, we try to characterize the effects of different transmission media and use that as an inexpensive and repeatable way to train ASR systems.

Page generated in 0.0796 seconds