• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 11
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Design And Development Of An Additive Fabrication Process And Material Selection Tool

Palmer, Andrew 01 January 2009 (has links)
In the Manufacturing Industry there is a subset of technologies referred to as Rapid Technologies which are those technologies that create the ability to compress the time to market for new products under development . Of this subset, Additive Fabrication (AF), or more commonly known as Rapid Prototyping (RP), acquires much attention due to its unique and futuristic approach to the production of physical parts directly from 3D CAD data, CT or MRI scans, or data from laser scanning systems by utilizing various techniques to consecutively generate cross-sectional layers of a given thickness upon the previous layer to form 3D objects. While Rapid Prototyping is the most common name for the production technology it is also referred to as Additive Manufacturing, Layer Based Manufacturing, Direct Digital Manufacturing, Free-Form Fabrication, and 3-Dimensional Printing. With over 35 manufacturers of Additive Fabrication equipment in 2006 , the selection of an AF process and material for a specific application can become a significant task, especially for those with little or no technical experience with the technology and to add to this challenge, many of the various processes have multiple material options to select from . This research was carried out in order to design and construct a system that would allow a person, regardless of their level of technical knowledge, to quickly and easily filter through the large number of Additive Fabrication processes and their associated materials in order to find the most appropriate processes and material options to create physical reproductions of any part. The selection methodology used in this paper is a collection of assumptions and rules taken from the author's viewpoint of how, in real world terms, the selection process generally takes place between a consumer and a service provider. The methodology uses those assumptions in conjunction with a set of expert based rules to direct the user to a best set of qualifying processes and materials suited for their application based on as many or as few input fields the user may be able to complete.
22

Innovative Tessellation Algorithm for Generating More Uniform Temperature Distribution in the Powder-bed Fusion Process

Ehsan Maleki Pour (5931092) 16 January 2019 (has links)
<div>Powder Bed Fusion Additive Manufacturing enables the fabrication of metal parts with complex geometry and elaborates internal features, the simplication of the assembly process, and the reduction of development time. However, the lack of consis-tent quality hinders its tremendous potential for widespread application in industry. This limits its ability as a viable manufacturing process particularly in the aerospace and medical industries where high quality and repeatability are critical. A variety of defects, which may be initiated during the powder-bed fusion additive manufacturing process, compromise the repeatability, precision, and resulting mechanical properties of the final part. The literature review shows that a non-uniform temperature distribution throughout fabricated layers is a signicant source of the majority of thermal defects. Therefore, the work introduces an online thermography methodology to study temperature distribution, thermal evolution, and thermal specications of the fabricated layers in powder-bed fusion process or any other thermal inherent AM process. This methodology utilizes infrared technique and segmentation image processing to extract the required data about temperature distribution and HAZs of the layer under fabrication. We conducted some primary experiments in the FDM process to leverage the thermography technique and achieve a certain insight to be able to propose a technique to generate a more uniform temperature distribution. These experiments lead to proposing an innovative chessboard scanning strategy called tessellation algorithm, which can generate more uniform temperature distribution and diminish the layer warpage consequently especially throughout the layers with either geometry that is more complex or poses relatively longer dimensions. In the next step, this work develops a new technique in ABAQUS to verify the proposed scanning strategy. This technique simulates temperature distribution throughout a layer printed by chessboard printing patterns in powder-bed fusion process in a fraction of the time taken by current methods in the literature. This technique compares the temperature distribution throughout a designed layer printed by three presented chessboard-scanning patterns, namely, rastering pattern, helical pattern, and tessellation pattern. The results conrm that the tessellation pattern generates more uniform temperature distribution compared with the other two patterns. Further research is in progress to leverage the thermography methodology to verify the simulation technique. It is also pursuing a hybrid closed-loop online monitoring (OM) and control methodology, which bases on the introduced tessellation algorithm and online thermography in this work and Articial Neural Networking (ANN) to generate the most possible uniform temperature distribution within a safe temperature range layer-by-layer.</div>
23

Innovative Tessellation Algorithm for Generating More Uniform Temperature Distribution in the Powder-bed Fusion Process

Maleki Pour, Ehsan 12 1900 (has links)
Purdue School of Engineering and Technology, Indianapolis / Powder Bed Fusion Additive Manufacturing enables the fabrication of metal parts with complex geometry and elaborates internal features, the simplification of the assembly process, and the reduction of development time. However, the lack of consistent quality hinders its tremendous potential for widespread application in industry. This limits its ability as a viable manufacturing process particularly in the aerospace and medical industries where high quality and repeatability are critical. A variety of defects, which may be initiated during the powder-bed fusion additive manufacturing process, compromise the repeatability, precision, and resulting mechanical properties of the final part. The literature review shows that a non-uniform temperature distribution throughout fabricated layers is a significant source of the majority of thermal defects. Therefore, the work introduces an online thermography methodology to study temperature distribution, thermal evolution, and thermal specifications of the fabricated layers in powder-bed fusion process or any other thermal inherent AM process. This methodology utilizes infrared technique and segmentation image processing to extract the required data about temperature distribution and HAZs of the layer under fabrication. We conducted some primary experiments in the FDM process to leverage the thermography technique and achieve a certain insight to be able to propose a technique to generate a more uniform temperature distribution. These experiments lead to proposing an innovative chessboard scanning strategy called tessellation algorithm, which can generate more uniform temperature distribution and diminish the layer warpage consequently especially throughout the layers with either geometry that is more complex or poses relatively longer dimensions. In the next step, this work develops a new technique in ABAQUS to verify the proposed scanning strategy. This technique simulates temperature distribution throughout a layer printed by chessboard printing patterns in powder-bed fusion process in a fraction of the time taken by current methods in the literature. This technique compares the temperature distribution throughout a designed layer printed by three presented chessboard-scanning patterns, namely, rastering pattern, helical pattern, and tessellation pattern. The results confirm that the tessellation pattern generates more uniform temperature distribution compared with the other two patterns. Further research is in progress to leverage the thermography methodology to verify the simulation technique. It is also pursuing a hybrid closed-loop online monitoring and control methodology, which bases on the introduced tessellation algorithm and online thermography in this work and Artificial Neural Networking (ANN) to generate the most possible uniform temperature distribution within a safe temperature range layer-by-layer.
24

Development of 3D Printing Multifunctional Materials for Structural Health Monitoring

Cole M Maynard (6622457) 11 August 2022 (has links)
<p>Multifunctional additive manufacturing has the immense potential of addressing present needs within structural health monitoring by enabling a new additive manufacturing paradigm that redefines what a sensor is, or what sensors should resemble. To achieve this, the properties of printed components must be precisely tailored to meet structure specific and application specific requirements. However due to the limited number of commercially available multifunctional filaments, this research investigates the in-house creation of adaptable piezoresistive multifunctional filaments and their potential within structural health monitoring applications based upon their characterized piezoresistive responses. To do so, a rigid polylactic acid based-filament and a flexible thermoplastic polyurethane based-filament were modified to impart piezoresistive properties using carbon nanofibers. The filaments were produced using different mixing techniques, nanoparticle concentrations, and optimally selected manufacturing parameters from a design of experiments approach. The resulting filaments exhibited consistent resistivity values which were found to be less variable under specific mixing techniques than commercially available multifunctional filaments. This improved consistency was found to be a key factor which held back currently available piezoresistive filaments from fulfilling needs within structural health monitoring. To demonstrate the ability to meet these needs, the piezoresistive responses of three dog-bone shaped sensor sizes were measured under monotonic and cyclic loading conditions for the optimally manufactured filaments. The characterized piezoresistive responses demonstrated high strain sensitivities under both tensile and compressive loads. These piezoresistive sensors demonstrated the greatest sensitivity in tension, where all three sensor sizes exhibited gauge factors over 30. Cyclic loading supported these results and further demonstrated the accuracy and reliability of the printed sensors within SHM applications.</p>
25

REDUCED ORDER MODELING ENABLED PREDICTIONS OF ADDITIVE MANUFACTURING PROCESSES

Charles Reynolds Owen (19320985) 02 August 2024 (has links)
<p dir="ltr">For additive manufacturing to be a viable method to build metal parts for industries such as nuclear, the manufactured parts must be of higher quality and have lower variation in said quality than what can be achieved today. This high variation in quality bars the techniques from being used in high safety tolerance fields, such as nuclear. If this obstacle could be overcome, the benefits of additive manufacturing would be in lower cost for complex parts, as well as the ability to design and test parts in a very short timeframe, as only the CAD model needs to be created to manufacture the part. In this study, work to achieve this lower variation of quality was approached in two ways. The first was in the development of surrogate models, utilizing machine learning, to predict the end quality of additively manufactured parts. This was done by using experimental data for the mechanical properties of built parts as outputs to be predicted, and in-situ signals captured during the manufacturing process as inputs to the model. To capture the in-situ signals, cameras were used for thermal and optical imaging, leveraging the natural layer-by-layer manufacturing method used in AM techniques. The final models were created using support vector machine and gaussian process regression machine learning algorithms, giving high correlations between the insitu signals and mechanical properties of relative density, elongation to fracture, uniform elongation, and the work hardening exponent. The second approach to this study was in the development of a reduced order model for a computer simulation of an AM build. For project, a ROM was built inside the MOOSE framework, and was developed for an AM model designed by the MOOSE team, using proper orthogonal decomposition to project the problem onto a lower dimensional subspace, using POD to design the reduced basis subspace. The ROM was able to achieve a reduction to 1% the original dimensionality of the problem, while only allowing 2-5% relative error associated with the projection.</p>
26

Development of Non-Conventional Microwave Devices Based on Substrate-Integrated Technology for Advanced Applications

Nova Giménez, Vicente 26 February 2024 (has links)
[ES] El uso masivo de los sistemas de comunicaciones inalámbricas y móviles ha tenido un impacto significativo en nuestra sociedad. Estas tecnologías han experimentado una amplia adopción en el mercado, volviéndose totalmente indispensables en nuestro día a día y provocando un aumento notable en la demanda de movilidad y ancho de banda. Esto ha llevado a la rápida aparición de nuevos sistemas de comunicación y a la progresiva saturación del espectro radioeléctrico, lo que conlleva un constante aumento en los requisitos de los sistemas de radiofrecuencia. Como resultado, los dispositivos que forman parte de estos sistemas se ven sometidos a especificaciones cada vez más restrictivas. Estas restricciones se han visto fuertemente incrementadas en las comunicaciones espaciales, donde los nuevos sistemas basados en satélite de alta capacidad y grandes constelaciones fuerzan la reducción de costes a la vez que requieren de altas prestaciones. Con el fin de satisfacer las crecientes demandas de los sistemas inalámbricos, se busca el desarrollo de dispositivos de comunicación que ofrezcan altas prestaciones a bajo costo. Estos dispositivos también deben ser compactos, ligeros y fáciles de integrar con diversas tecnologías de guiado de ondas (guías de ondas, cables coaxiales y tecnologías planares). En respuesta a estas necesidades, han surgido dos soluciones tecnológicas: los circuitos integrados en sustrato (SIC) y la fabricación aditiva (AM). La tecnología SIC permite combinar tecnologías de guiado planares y no planares en un mismo sistema, lo que resulta en unas prestaciones híbridas entre ambas tecnologías. Además, ofrece una notable reducción de peso y una gran miniaturización y su naturaleza planar permite una integración nunca vista. Por otro lado, la fabricación aditiva permite crear dispositivos con geometrías complejas y bajo peso, lo que proporciona menos limitaciones en el diseño. Esto permite el desarrollo de dispositivos con características avanzadas y la integración de los diferentes bloques de una cadena de radiofrecuencia en un único dispositivo, mejorando así las especificaciones del sistema y reduciendo su complejidad. Tanto la tecnología SIC como la fabricación aditiva son de gran interés para el sector espacial. Sin embargo, la aplicación de estas tecnologías en el agresivo entorno espacial aún no ha sido estudiada. Por ello, el objetivo principal de esta tesis es precisamente investigar la aplicación de estas tecnologías al diseño de dispositivos de microondas para aplicaciones espaciales. Con este estudio, se busca obtener un mayor conocimiento de las capacidades y limitaciones de estas tecnologías en el contexto espacial, y así explorar su potencial para mejorar y optimizar los dispositivos utilizados en este tipo de sistemas. En primer lugar, se ha llevado a cabo una comparación de diferentes topologías de filtros implementados en tecnología SIC, los cuales han sido sometidos a pruebas ambientales que simulan las condiciones reales de operación en el espacio. En segundo lugar, se ha estudiado la aplicación de técnicas de fabricación aditivas al desarrollo de dispositivos de microondas. Para ello, se ha desarrollado un novedoso método de metalización y un sistema de integración de filtros de montaje superficial. Con estas tecnologías se han desarrollado una serie de filtros paso banda que han sido sometidos a pruebas de ambiente espacial, incluyendo: ciclado térmico, pruebas de vibración y test de efecto multipactor. Por último, se ha estudiado el uso de cristal líquido para agregar capacidades de reconfigurabilidad a dispositivos SIC. Se han analizado las características mecánicas y electromagnéticas de estos materiales mediante dos métodos de caracterización basados en elementos resonantes. Además, se ha desarrollado un demostrador tecnológico basado en la tecnología ESICL. / [CA] L'ús massiu dels sistemes de comunicacions sense fils i mòbils ha tingut un impacte significatiu en la nostra societat. Aquestes tecnologies han experimentat una àmplia adopció en el mercat, perquè s'han tornat totalment indispensables en el nostre dia a dia i han provocat un augment notable en la demanda de mobilitat i amplada de banda. Al seu torn, això ha portat a la ràpida aparició de nous sistemes de comunicació i a la progressiva saturació de l'espectre radioelèctric, la qual cosa comporta un constant augment en els requisits dels sistemes de radiofreqüència. Com a resultat, els dispositius que formen part d'aquests sistemes es veuen sotmesos a especificacions cada vegada més restrictives. Aquestes restriccions s'han vist fortament incrementades en les comunicacions espacials. Amb la finalitat de satisfer les creixents demandes dels sistemes sense fils, se cerca el desenvolupament de dispositius de comunicació que oferisquen altes prestacions a baix cost. Aquests dispositius també han de ser compactes, lleugers i fàcils d'integrar amb diverses tecnologies de guia d'ones (guies d'ones, cables coaxials i tecnologies planar). En resposta a aquestes necessitats, han sorgit dues soluciones tecnològiques: els circuits integrats en substrat (SIC) i la fabricació additiva (AM). La tecnología SIC permet combinar tecnologies de guiatge planars i no planars en un mateix sistema, la qual cosa resulta en unes prestacions híbrides. A més, ofereix una notable reducció de pes i una gran miniaturització i la seua naturalesa planar permet una integració no vista mai abans. D'altra banda, la fabricació additiva permet crear dispositius amb geometries complexes i baix pes, la qual cosa proporciona menys limitacions en el disseny. Això permet el desenvolupament de dispositius amb característiques avançades i la integració dels diferents blocs que conformen la cadena de radiofreqüència, que millora així les especificacions del sistema i en redueix la complexitat. Tant la tecnologia SIC com la de fabricació additiva són de gran interès per al sector espacial. Tanmateix, l'aplicació d'aquestes tecnologies en l'agressiu entorn espacial encara no ha sigut estudiada. Per això, l'objectiu principal d'aquesta tesi és investigar l'aplicació d'aquestes tecnologies en el disseny de dispositius de microones per a aplicacions espacials. A través d'aquest estudi, se cerca obtenir un major coneixement sobre les capacitats i limitacions d'aquestes tecnologies en el context espacial. En primer lloc, s'ha dut a terme una comparació de diferents topologies de filtres implementats en tecnologia SIC, els quals han sigut sotmesos a proves ambientals que simulen les condicions reals d'operació a l'espai. En segon lloc, s'ha estudiat l'aplicació de tècniques de fabricació additives al desenvolupament de dispositius de microones. Per a això, s'ha desenvolupat un nou mètode de metal·lització autocatalític i un sistema d'integració de filtres de muntatge superficial. Aquestes tecnologies s'han combinat per a desenvolupar una sèrie de filtres passabanda de muntatge superficial. Finalment, aquests filtres han sigut sotmesos a proves d'ambient espacial, incloent-hi: ciclatge tèrmic, proves de vibració i test d'efecte multipactor. Finalment, s'ha estudiat l'ús de cristall líquid per a agregar capacitats de reconfigurabilitat a dispositius de microones integrats en substrat. S'han analitzat les característiques mecàniques i electromagnètiques d'aquests materials mitjançant dos mètodes de caracterització basats en elements ressonants. A més, s'ha desenvolupat un demostrador tecnològic basat en la tecnologia ESICL. / [EN] The widespread use of wireless and mobile communication systems has had a significant impact on our society. These technologies have been widely adopted in the market, becoming essential in our daily lives and leading to a notable increase in the demand for mobility and bandwidth. Consequently, new communication systems are rapidly emerging, and the radio frequency spectrum is becoming increasingly crowded, resulting in continuously rising requirements for radio frequency systems. As a result, radio frequency devices are subjected to ever more stringent specifications. These restrictions are particularly heightened in space communications. To meet the growing demands of wireless systems, there is a need to develop communication devices that offer high performance at a low cost. Additionally, these devices should be compact, lightweight, and easily integrable with various waveguide technologies (waveguides, coaxial cables, and planar technologies). In response to these needs, two technological solutions have emerged: Substrate Integrated Circuits (SIC) and Additive Manufacturing (AM). SIC technology combines planar and non-planar guiding technologies in a single system, resulting in hybrid performance between both technologies. It significantly reduces weight and miniaturisation, and its planar nature allows for unprecedented integration. On the other hand, additive manufacturing enables the creation of devices with complex geometries and low weight, providing fewer design limitations. This allows for the development of devices with advanced features and the integration of different blocks of the radio frequency chain, thereby enhancing the performance of the entire system and reducing its complexity. Both SIC and AM are of great interest to the space sector. However, the application of these technologies in the harsh space environment has not been thoroughly studied. The main objective of this thesis is to investigate the application of these technologies in the design of microwave devices for space applications. This study aims to gain a deeper understanding of the capabilities and limitations of these technologies in the space context and explore their potential for improving and optimising devices used in such systems. The thesis first involves the design and comparison of different filter topologies implemented using SIC technology, which has been subjected to environmental tests simulating real space operation conditions. Secondly, the application of additive manufacturing techniques to the development of microwave devices has been studied. For this purpose, a novel metallisation method and a system for surface-mounted filter integration have been developed. These technologies were combined to develop a series of surface-mounted bandpass filters. Finally, these filters were subjected to space environmental tests, including thermal cycling, vibration tests, and multipactor effect tests. Lastly, the use of liquid crystal to add reconfigurability capabilities to substrate-integrated microwave devices has been investigated. The mechanical and electromagnetic characteristics of these materials have been analysed using two resonant element-based characterisation methods. Additionally, a technological demonstrator based on ESICL technology has been developed. / Nova Giménez, V. (2024). Development of Non-Conventional Microwave Devices Based on Substrate-Integrated Technology for Advanced Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202844

Page generated in 0.0822 seconds