Spelling suggestions: "subject:"iir - low"" "subject:"iir - flow""
41 |
Instabilité barotrope du jet de BickleyDeblonde, Godelieve. January 1981 (has links)
No description available.
|
42 |
Evaluation of atrium smoke exhaust make-up air velocity /Zhou, Jian. January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2007. / Includes bibliographical references (p. 159-162). Also available in electronic format on the Internet.
|
43 |
Instabilité barotrope du jet de BickleyDeblonde, Godelieve. January 1981 (has links)
No description available.
|
44 |
Laryngeal source excitation modellingPereira, J. C. January 1987 (has links)
No description available.
|
45 |
An experimental investigation of the flow in wide-angle screened diffusersLane, D. L. January 1986 (has links)
No description available.
|
46 |
Building aerodynamics : Laser Doppler anemometer measurements and computer predictions of air flow on models of buildingsAroussi, A. January 1988 (has links)
No description available.
|
47 |
Application of recess vaned casing treatment to axial flow compressorsAzimian, A. R. January 1987 (has links)
In axial flow compressors and fans, the stable working range is restricted by the so called stall line where operation may become unstable and simultaneously a short fall in compressor performance appears. Stall margin improvement has been a major task and experimental observations over the last two decades have shown that modifying the shape of the outer annulus wall, above the tips of rotor blades, is effective in delaying the onset of stall to lower mass flow rates. A wide variety of wall modifications or casing treatments have been tried with a range of stall flow improvement which can amount to about 20% .(of the stalled flow) An alternative technique for stall margin improvement in a single stage axial flow machine has been studied and results will be described in the present thesis. The technique for delaying stall involves a large scale treatment to the outer casing of the compressor which extends partly over and mainly upstream of the rotor. The operating principle appears to be that as the flow is reduced towards the stall point some radially unbalanced cells are transported from the blade tips where they are collected in the treatment , turned by the treatment vanes , and re-introduced to the main flow upstream of the rotor. A rotor with and without outlet stators has been tested ( and also with and without casing treatment) over a range of speeds and flow conditions. Also the flow condition inside the recessed casing has been simulated by means of an existing computer code known as PHOENICS.
|
48 |
Application of finite-difference methods to steady-state advectionMolenkamp, Charles Richard, 1941- January 1967 (has links)
No description available.
|
49 |
An experimental and theoretical study of buoyancy driven air-flow in a half-scale stairwell modelZohrabian, Alfred Sorooshkani January 1989 (has links)
The buoyancy-driven air flow and the associated energy transfer within a half-scale stairwell model have been investigated experimentally and theoretically. The experimental work comprised the larger part of the investigation. The stairwell model consisted of a lower and an upper compartment connected through the stairway. The recirculation of air was maintained by a continuous supply of heat in the lower compartment. Two different cases, referred to as closed and open non-sloping ceiling stairwells, were considered. In the former, the stairwell formed a closed system, and in the latter situation the air was allowed to enter and leave the stairwell through small openings in the lower and upper compartments, a situation which may arise in practice due to the presence of cracks. The experimental work provided detailed measurements of the velocity and temperature within the stairwell model. Hot-wire anemometers of a temperature-compensated type were used to measure the velocities, and the air temperatures were measured using platinum resistance probes. These measurements, supported by flow visualisation using smoke, provided a detailed description of the flow field. Due to the symmetry condition which existed in the stairwell, the measurements were carried out in only one-half of the stairwell. The results for both closed and open cases include the velocity and temperature profiles at the throat area (minimum area between the stairway and the lower compartment ceiling) for various distances from the side wall, mean temperatures in the upper and the lower compartments, volume and mass flows up and down the stairwell. The effect of the heat input rate on these parameters is also included. The results also include the heat losses through various surfaces bounding the system, heat and mass transfer through the stairwell joints and inlet and outlet openings, and the wall temperatures. The theoretical work was concerned with a numerical prediction of turbulent flow in two-dimensions. The k-c turbulence model, with the buoyancy terms included, was adopted. The governing equations for mass, momentum, energy and those of the turbulence model were solved using a finite-volume method. The model incorporates the SIMPLE algorithm for the derivation of pressure. The wall-function method was used for the treatment of the flow near the walls. The hybrid discretisation scheme was adopted. The predicted f low pattern was in good agreement with the pattern established by experiment. The proportion of the heat loss from the upper compartment was also in good agreement with the experiment. The maximum velocities in the throat area were underpredicted. The discrepancy between the prediction and experiment is believed to arise from shortcomings of the turbulence model, the treatment of the near-wall flow and the two-dimensionality of the numerical model.
|
50 |
Mean velocity and turbulence measurements of flow around a 6:1 prolate spheroid /Barber, Kevin Michael, January 1990 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1990. / Vita. Abstract. Includes bibliographical references (leaves 47-51). Also available via the Internet.
|
Page generated in 0.0843 seconds