• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fuel optimal rendezvous including a radial constraint

Vasudevan, Gopal January 1986 (has links)
Fuel-optimal rendezvous in orbit is examined using thrust-impulses and coasting arcs. Necessary conditions for the optimality of fuel-optimal rendezvous with and without radial constraints are derived. These conditions are then used to verify the optimality of trajectories obtained from a parameter-optimization technique. For rendezvous problems with radial constraint, locally optimal trajectories include constrained arcs or touch-point arcs. Numerical procedures to compute the costates and the jumps in the costates at the touch point and at the entry point to the constraint arc are provided. Locally optimal solutions for non-optimal trajectories with a minimum radius-constraint are obtained using criteria due to Lion and Handelsmann. Numerical solutions show that multiple-impulse trajectories almost always result in a lower cost function than the corresponding two impulse trajectories. It is also observed that trajectories comprised of only touch-point arcs can often be improved by using an additional impulse. / M. S.
2

Flow management in heat exchanger installations for intercooled turbofan engines

Kwan, Pok Wang January 2011 (has links)
No description available.
3

Kraftstoffverbrauch durch Entnahme von Zapfluft und Wellenleistung von Strahltriebwerken

Ahlefelder, Sebastian January 2006 (has links) (PDF)
Zapfluft und Wellenleistung wird den Triebwerken entnommen, um die Energie für beispielsweise die Kraftstoffpumpen, das Inflight Entertainment oder die Flügelvorderkantenenteisung zu erzeugen. Diese Energiegenerierung, hat einen Anstieg des Kraftstoffverbrauches zur Folge. Es hat sich herausgestellt, dass die Stelle der Zapfluftentnahme einen starken Einfluss auf den Gradienten des Brennstoffverbrauches hat. Das Projekt beschäftigt sich mit zwei- und dreiwelligen Turbofantriebwerken und untersucht an ihnen, die Effekte der Leistungsnahmen. Als Simulationssoftware wurde GasTurb 8.0 eingesetzt und auf die integrierten Triebwerkskonfigurationen zurückgegriffen. Ziel der Arbeit ist die Ermittlung einer mathematischen Beziehung zur Berechnung des zusätzlichen Kraftstoffmassenstromes infolge einer Zapfluft- oder Wellenleistungsentnahme. So stellt sich die Frage, welche Triebwerksparameter dafür berücksichtigt werden müssen. Eine Wellenleistungsentnahme verursacht beispielsweise einen linearen Anstieg des spezifischen Kraftstoffverbrauches. Ist diese Zunahme, identisch mit der einer Zapfluftentnahme? Am Ende der Kapitel werden die Ergebnisse mit Literaturwerten verglichen und versucht Tendenzen zu erkennen bzw. bestehende zu erhärten.
4

Aircraft Fuel Consumption - Estimation and Visualization

Burzlaff, Marcus January 2017 (has links) (PDF)
In order to uncover the best kept secret in today's commercial aviation, this project deals with the calculation of fuel consumption of aircraft. With only the reference of the aircraft manufacturer's information, given within the airport planning documents, a method is established that allows computing values for the fuel consumption of every aircraft in question. The aircraft's fuel consumption per passenger and 100 flown kilometers decreases rapidly with range, until a near constant level is reached around the aircraft's average range. At longer range, where payload reduction becomes necessary, fuel consumption increases significantly. Numerical results are visualized, explained, and discussed. With regard to today's increasing number of long-haul flights, the results are investigated in terms of efficiency and viability. The environmental impact of burning fuel is not considered in this report. The presented method allows calculating aircraft type specific fuel consumption based on publicly available information. In this way, the fuel consumption of every aircraft can be investigated and can be discussed openly.
5

Reverse Engineering of Passenger Jets - Classified Design Parameters

De Grave, Emiel January 2017 (has links) (PDF)
This thesis explains how the classified design parameters of existing passenger jets can be determined. The classified design parameters are; the maximum lift coefficient for landing and take-off, the maximum aerodynamic efficiency and the specific fuel consumption. The entire concept is based on the preliminary sizing of jet powered civil aeroplanes. This preliminary sizing is explained in detail because it is the foundation of the final result. The preliminary sizing is combined using reverse engineering which is not a strict method. Therefore, only the basics are explained. By applying reverse engineering on the preliminary sizing and aiming for the classified design parameters as output, formulas are derived to calculate the maximum lift coefficients, the maximum aerodynamic efficiency and the specific fuel consumption. The goal is to calculate these parameters, using only aircraft specifications that are made public by the manufacturer. The calculations are complex with mutual relations, iterative processes and optimizations. Therefore, it is interesting to integrate everything in a tool. The tool is built in Microsoft Excel and explained in detail adding operating instructions. The program is executed for miscellaneous aeroplanes, supported with the necessary comments. Investigated aeroplanes are: Caravelle 10B (Sud-Aviation), Boeing 707-320C, BAe 146-200 (British Aerospance), A320-200 (Airbus), "The Rebel" (based on A320), Boeing SUGAR High, Boeing 747-400, Blended Wing Body VELA 2 (VELA) and Dassault Falcon 8X.
6

Basic Comparison of Three Aircraft Concepts: Classic Jet Propulsion, Turbo-Electric Propulsion and Turbo-Hydraulic Propulsion

Rodrigo, Clinton January 2019 (has links) (PDF)
Purpose - This thesis presents a comparison of aircraft design concepts to identify the superior propulsion system model among turbo-hydraulic, turbo-electric and classic jet propulsion with respect to Direct Operating Costs (DOC), environmental impact and fuel burn. --- Approach - A simple aircraft model was designed based on the Top-Level Aircraft Requirements of the Airbus A320 passenger aircraft, and novel engine concepts were integrated to establish new models. Numerous types of propulsion system configurations were created by varying the type of gas turbine engine and number of propulsors. --- Findings - After an elaborate comparison of the aforementioned concepts, the all turbo-hydraulic propulsion system is found to be superior to the all turbo-electric propulsion system. A new propulsion system concept was developed by combining the thrust of a turbofan engine and utilizing the power produced by the turbo-hydraulic propulsion system that is delivered via propellers. The new partial turbo-hydraulic propulsion concept in which 20% of the total cruise power is coming from the (hydraulic driven) propellers is even more efficient than an all turbo-hydraulic concept in terms of DOC, environmental impact and fuel burn. --- Research Limitations - The aircraft were modelled with a spreadsheet based on handbook methods and relevant statistics. The investigation was done only for one type of reference aircraft and one route. A detailed analysis with a greater number of reference aircraft and types of routes could lead to other results. --- Practical Implications - With the provided spreadsheet, the DOC and environmental impact can be approximated for any commercial reference aircraft combined with the aforementioned propulsion system concepts. --- Social Implications - Based on the results of this thesis, the public will be able to discuss the demerits of otherwise highly lauded electric propulsion concepts. --- Value - To evaluate the viability of the hydraulic propulsion systems for passenger aircraft using simple mass models and aircraft design concept.
7

Evaluation of the Hybrid-Electric Aircraft Project Airbus E-Fan X

Benegas Jayme, Diego January 2019 (has links) (PDF)
Purpose - This master thesis evaluates the hybrid-electric aircraft project E-Fan X with respect to its economical and environmental performance in comparison to its reference aircraft, the BAe 146-100. The E-Fan X is replacing one of the four jet engines of the reference aircraft by an electric motor and a fan. A turboshaft engine in the cargo compartment drives a generator to power the electric motor. --- Methodology - The evaluation of this project is based on standard aircraft design equations. Economics are based on Direct Operating Costs (DOC), which are calculated with the method of the Association of European Airlines (AEA) from 1989, inflated to 2019 values. Environmental impact is assessed based on local air quality (NOx, Ozone and Particulate Matter), climate impact (CO2, NOx, Aircraft-Induced Cloudiness known as AIC) and noise pollution estimated with fundamental acoustic equations. --- Findings - The battery on board the E-Fan X it is not necessary. In order to improve the proposed design, the battery was eliminated. Nevertheless, due to additional parts required in the new configuration, the aircraft is 902 kg heavier. The turboshaft engine saves only 59 kg of fuel. The additional mass has to be compensated by a payload reduced by 9 passengers. The DOC per seat-mile are up by more than 10% and equivalent CO2 per seat-mile are more than 16% up in the new aircraft. --- Research limitations - Results are limited in accuracy by the underlying standard aircraft design calculations. The results are also limited in accuracy by the lack of knowledge of some data of the project. --- Practical implications - The report contributes arguments to the discussion about electric flight. --- Social implications - Results show that unconditional praise given to the environmental characteristics of this industry project are not justified.

Page generated in 0.4884 seconds