Spelling suggestions: "subject:"lgg"" "subject:"glg""
1 |
AlgR Directly Controls rsmA in Pseudomonas aeruginosaSpeaks, Tyler 01 August 2015 (has links)
Pseudomonas aeruginosa is a bacterial pathogen that can infect any human tissue. The lungs of cystic fibrosis patients become chronically infected with Pseudomonas aeruginosa. Virulence factor gene expression is under elaborate regulatory control that remains poorly characterized. Understanding the regulatory hierarchy involved during infection is essential for identifying novel drug targets. RsmA is a post-transcriptional regulatory protein that controls expression of several virulence factors. Previous studies demonstrated alginate regulatory components AlgU and AlgR as regulators of rsmA expression. The aim of this study was to determine how AlgR controls rsmA expression. Western blot analysis of HA-tagged RsmA confirmed lower RsmA levels in an algR mutant. An electrophoretic mobility shift assay using purified AlgR demonstrated direct binding of AlgR to the rsmA promoter. These results indicate AlgR directly controls rsmA expression. We propose a mechanism whereby AlgR and AlgU work together to regulate rsmA.
|
2 |
The Pseudomonas Aeruginosa Two-Component Regulator AlgR Directly Activates rsmA Expression in a Phosphorylation-Independent MannerStacey, Sean D., Williams, Danielle A., Pritchett, Christopher L. 01 September 2017 (has links)
Pseudomonas aeruginosa is an important pathogen of the immunocompromised, causing both acute and chronic infections. In cystic fibrosis (CF) patients, P. aeruginosa causes chronic disease. The impressive sensory network of P. aeruginosa allows the bacterium to sense and respond to a variety of stimuli found in diverse environments. Transcriptional regulators, including alternative sigma factors and response regulators, integrate signals changing gene expression, allowing P. aeruginosa to cause infection. The two-component transcriptional regulator AlgR is important in P. aeruginosa pathogenesis in both acute and chronic infections. In chronic infections, AlgR and the alternative sigma factor AlgU activate the genes responsible for alginate production. Previous work demonstrated that AlgU controls rsmA expression. RsmA is a posttranscriptional regulator that is antagonized by two small RNAs, RsmY and RsmZ. In this work, we demonstrate that AlgR directly activates rsmA expression from the same promoter as AlgU. In addition, phosphorylation was not necessary for AlgR activation of rsmA using algR and algZ mutant strains. AlgU and AlgR appear to affect the antagonizing small RNAs rsmY and rsmZ indirectly. RsmA was active in a mucA22 mutant strain using leader fusions of two RsmA targets, tssA1 and hcnA. AlgU and AlgR were necessary for posttranscriptional regulation of tssA1 and hcnA. Altogether, our work demonstrates that the alginate regulators AlgU and AlgR are important in the control of the RsmA posttranscriptional regulatory system. These findings suggest that RsmA plays an unknown role in mucoid strains due to AlgU and AlgR activities.
|
3 |
The AlgZ/R Two-Component System Is Responsible for Attenuation of Virulence in Pseudomonas aeruginosaWilliams, Danielle A 01 December 2017 (has links) (PDF)
Pseudomonas aeruginosa is an important opportunistic pathogen. Many P. aeruginosa virulence factors are regulated by the AlgZ/R two component system. AlgZ is the sensor histidine kinase which phosphorylates AlgR, the response regulator. AlgR activates transcription of different gene targets based upon its phosphorylation state. The genes that encode AlgZ and AlgR are transcribed in an operon. While regulation of algR expression has been well studied, regulation of algZ expression has not. Using a pilW mutant in concert with algZTF-lacZ transcriptional fusion, we conducted a transposon mutagenesis to identify algZ regulators. We identified an unknown autoregulatory loop. The type IV pilus minor pilins prevent the phosphorylation of AlgR by AlgZ . This inhibition of the AlgZ/R system subsequently down-regulates both the expression of the fimU operon and the algZ/R operon. Because AlgR regulates virulence, it is possible that virulence can also be reduced by targeting activation of the AlgZ/R system.
|
4 |
Virulence Regulation in Pseudomonas aeruginosa via the Alginate Regulators, AlgU and AlgR, the posttranscriptional regulator, RsmA, and the Two-component System, AlgZ/RStacey, Sean 01 December 2018 (has links) (PDF)
Pseudomonas aeruginosa is a Gram-negative bacillus able to colonize a wide variety of environments. In the human host, P. aeruginosa can establish an acute infection or persist and create a chronic infection. P. aeruginosa is able to establish a niche and persist in human hosts by using a wide array of virulence factors used for: movement, killing host cells, and evading immune cells and antibiotics. Understanding virulence factors and their regulation has proved to be an important means of combating the morbidity and mortality of P. aeruginosa as well as the ever-increasing threat of drug resistance. By targeting virulence factors or their regulators with antivirulence compounds, the bacterium is rendered defenseless and more readily cleared by the immune system. In this study, we examine three different contributors to virulence factor regulation. First, we examined the role of the extracellular sigma factor AlgU and its contribution to regulating a post-transcriptional RsmA. AlgU is most commonly active in chronic infecting strains that produce copious amounts of the virulence factor, alginate. We confirmed that not only was their more RsmA in this background, but that there was a previously unidentified promoter for rsmA regulated by AlgU. In concert with this study, we followed up by studying the effects of AlgR on this unknown promoter. AlgU and AlgR are known to work together, specifically on the alginate operon, and we hypothesized based off of bioinformatics data this was the case with RsmA. Second, due to increased RsmA in this chronic infection strain, we set out to identify potential unknown virulence targets of RsmA. A previously unrevealed target, pasP, was shown to directly interact with RsmA. Third, in an acute infection model strain we identified a new regulatory loop involving the two-component system AlgZ/R. In a pilW strain deficient in the motility virulence factor type IV pili, we showed increased levels of AlgZ/R compared to wildtype, PAO1. The pilW strain produced less pyocyanin, rhamnolipid, and elastase and was attenuated in J774a.1 macrophages. Overall, these studies push the understanding of virulence factor regulation and open the door to potential therapeutic targets in treating P. aeruginosa infections.
|
5 |
PA2771 Affects algZ expression and AlgZ/R Phenotypic Outputs in Pseudomonas aeruginosaHughes, Abigail 01 August 2018 (has links) (PDF)
Pseudomonas aeruginosa is a central nosocomial pathogen that can infect any tissue in the human body. A two-component system in P. aeruginosa that regulates many virulence factors is the AlgZ/R system. A previously unidentified regulator of algZ, that does not affect algR, has been identified via transposon mutagenesis, ‘PA2771’. The mechanism of regulation has not been previously studied, and novel evidence of PA2771 functioning as a diguanyalate cyclase was observed. When PA2771 is active, cyclic di-GMP levels are high, promoting the upregulation of the fimU operon and Type VI pili. In the PA2771 mutant, an upregulation in the expression of the flagellar genes and swarming phenotype was observed, and restored via complementation. PA2771's function in regulating algZ expression, is likely indirect and alters virulence gene regulation and phenotypic outputs in P. aeruginosa in the switch between twitching and swimming motility, and appears to be specific to PA2771.
|
6 |
Antibiotic Treatment of Pseudomonas aeruginosa Biofilms Stimulates Expression of mgtE, a Virulence ModulatorRedelman, Carly Virginia 07 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Pseudomonas aeruginosa is a gram negative opportunistic pathogen with the capacity to cause serious disease by forming biofilms, most notably in the lungs of cystic fibrosis (CF) patients. Biofilms are communities of microorganisms that adhere to a solid surface, undergo global regulatory changes, secrete exopolysaccharides, and are innately antibiotic resistant. Virulence modulation is an important tool utilized by P. aeruginosa to propagate infection and biofilm formation in the CF airway. Many different virulence modulatory pathways and proteins have been identified including the protein, MgtE. MgtE has recently been discovered and has been implicated in virulence modulation, as an isogeneic mutation of mgtE leads to increased cytotoxicity. To further elucidate the role of MgtE in P. aerugionsa infections, transcriptional and translational regulation of this protein following antibiotic treatment has been explored. I have demonstrated that mgtE is transcriptionally upregulated following antibiotic treatment of most of the twelve antibiotics tested utilizing RT-PCR and QRT-PCR. A novel model system was employed, which utilizes cystic fibrosis bronchial epithelial (CFBE) cells homozygous for the ΔF508 mutation for these studies. This model system allows P. aeruginosa
biofilms to form on CFBE cells modeling the P. aeruginosa in the CF airway. Translational effects of antibiotic treatment on MgtE have been attempted via Western blotting and cytotoxicity assays. Furthermore, to explore the possibility that mgtE is interacting with a known regulatory pathway, a transposon-mutant library was utilized and the regulatory proteins, AlgR and NarX, among others have been identified as possibly interacting with MgtE. Lastly, an MgtE homologue from Staphylococcus aureus was utilized to further demonstrate the virulence modulatory effects of MgtE by demonstrating the expression of the homologue results in decreased cytotoxicity, exactly like expression of the native P. aeruginosa MgtE. This research explores a newly discovered protein that impacts cytotoxicity and biofilm formation and provides valuable information about P. aeruginosa virulence.
|
Page generated in 0.0189 seconds