• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Leaderless Distributed Hierarchy Formation

Beal, Jacob 01 December 2002 (has links)
I present a system for robust leaderless organization of an amorphous network into hierarchical clusters. This system, which assumes that nodes are spatially embedded and can only talk to neighbors within a given radius, scales to networks of arbitrary size and converges rapidly. The amount of data stored at each node is logarithmic in the diameter of the network, and the hierarchical structure produces an addressing scheme such that there is an invertible relation between distance and address for any pair of nodes. The system adapts automatically to stopping failures, network partition, and reorganization.
2

Programmable Self-Assembly: Constructing Global Shape using Biologically-inspire

Nagpal, Radhika 01 June 2001 (has links)
In this thesis I present a language for instructing a sheet of identically-programmed, flexible, autonomous agents (``cells'') to assemble themselves into a predetermined global shape, using local interactions. The global shape is described as a folding construction on a continuous sheet, using a set of axioms from paper-folding (origami). I provide a means of automatically deriving the cell program, executed by all cells, from the global shape description. With this language, a wide variety of global shapes and patterns can be synthesized, using only local interactions between identically-programmed cells. Examples include flat layered shapes, all plane Euclidean constructions, and a variety of tessellation patterns. In contrast to approaches based on cellular automata or evolution, the cell program is directly derived from the global shape description and is composed from a small number of biologically-inspired primitives: gradients, neighborhood query, polarity inversion, cell-to-cell contact and flexible folding. The cell programs are robust, without relying on regular cell placement, global coordinates, or synchronous operation and can tolerate a small amount of random cell death. I show that an average cell neighborhood of 15 is sufficient to reliably self-assemble complex shapes and geometric patterns on randomly distributed cells. The language provides many insights into the relationship between local and global descriptions of behavior, such as the advantage of constructive languages, mechanisms for achieving global robustness, and mechanisms for achieving scale-independent shapes from a single cell program. The language suggests a mechanism by which many related shapes can be created by the same cell program, in the manner of D'Arcy Thompson's famous coordinate transformations. The thesis illuminates how complex morphology and pattern can emerge from local interactions, and how one can engineer robust self-assembly.
3

Organizing a Global Coordinate System from Local Information on an Amorphous Computer

Nagpal, Radhika 29 August 1999 (has links)
This paper demonstrates that it is possible to generate a reasonably accurate coordinate system on randomly distributed processors, using only local information and local communication. By coordinate systems we imply that each element assigns itself a logical coordinate that maps to its global physical location, starting with no apriori knowledge of position or orientation. The algorithm presented is inspired by biological systems that use chemical gradients to determine the position of cells. Extensive analysis and simulation results are presented. Two key results are: there is a critical minimum average neighborhood size of 15 for good accuracy and there is a fundamental limit on the resolution of any coordinate system determined strictly from local communication. We also demonstrate that using this algorithm, random distributions of processors produce significantly better accuracy than regular processor grids - such as those used by cellular automata. This has implications for discrete models of biology as well as for building smart sensor arrays.

Page generated in 0.2606 seconds