• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Biological Basis of Joint Ankylosis: Studies in the ank/ank Mouse

Las Heras, Facundo 08 March 2011 (has links)
The first objective of my work was to use the ank/ank (progressive ankylosis) mutant mice, which have a deficiency in inorganic pyrophosphate transport, to address the role of Ank in joint ankylosis. I observed the presence of hypertrophic chondrocytes in the uncalcified ank/ank mice articular cartilage. This novel phenotype is likely due to a dysregulation of chondrocyte maturation as these chondrocytes expressed hypertrophic chondrocyte markers (collagen type X and tissue non-specific alkaline phosphatase). I also showed by immunohistochemical staining that beta-catenin expression was upregulated and localized in the nuclei of articular ank/ank chondrocytes, suggesting activation of Wnt/beta-catenin signaling in these chondrocytes. The second objective was to use ank/ank mice as an informative model for understanding ankylosis mechanisms in human ankylosing spondylitis (AS) patients, as WNT/beta-catenin signaling plays an important role in ankylosis in AS patients. We attempted rescue of joint ankylosis in ank/ank mice by gene transfer of noggin, an antagonist of BMP signaling. Paradoxically, noggin-treated ank/ank mice had accelerated ankylosis, as evidenced by joint pathology and IHC staining of beta-catenin showed more intense signals in the spinal chondrocytes of the treated mice. As noggin and sclerostin (an antagonist of beta-catenin signaling) form a mutually inhibitory complex, we hypothesize that the formation of this complex results in relieving suppression of both beta-catenin and BMP signaling, leading to more severe ankylosis in ank/ank mice. By quantitative molecular imaging, I have demonstrated that ankylosis in these mutant mice developed simultaneously in distal and axial joint, instead of being a centripetal process. In summary, I have made three original observations in the ank/ank mice: the hypertrophic chondrocyte phenotype; activation of beta-catenin signaling and the simultaneous development of ankylosis in distal and axial joints. These mutant mice serve as valuable model for pre-clinical studies which enable modeling and testing of novel anti-ankylosis treatments.
2

The Biological Basis of Joint Ankylosis: Studies in the ank/ank Mouse

Las Heras, Facundo 08 March 2011 (has links)
The first objective of my work was to use the ank/ank (progressive ankylosis) mutant mice, which have a deficiency in inorganic pyrophosphate transport, to address the role of Ank in joint ankylosis. I observed the presence of hypertrophic chondrocytes in the uncalcified ank/ank mice articular cartilage. This novel phenotype is likely due to a dysregulation of chondrocyte maturation as these chondrocytes expressed hypertrophic chondrocyte markers (collagen type X and tissue non-specific alkaline phosphatase). I also showed by immunohistochemical staining that beta-catenin expression was upregulated and localized in the nuclei of articular ank/ank chondrocytes, suggesting activation of Wnt/beta-catenin signaling in these chondrocytes. The second objective was to use ank/ank mice as an informative model for understanding ankylosis mechanisms in human ankylosing spondylitis (AS) patients, as WNT/beta-catenin signaling plays an important role in ankylosis in AS patients. We attempted rescue of joint ankylosis in ank/ank mice by gene transfer of noggin, an antagonist of BMP signaling. Paradoxically, noggin-treated ank/ank mice had accelerated ankylosis, as evidenced by joint pathology and IHC staining of beta-catenin showed more intense signals in the spinal chondrocytes of the treated mice. As noggin and sclerostin (an antagonist of beta-catenin signaling) form a mutually inhibitory complex, we hypothesize that the formation of this complex results in relieving suppression of both beta-catenin and BMP signaling, leading to more severe ankylosis in ank/ank mice. By quantitative molecular imaging, I have demonstrated that ankylosis in these mutant mice developed simultaneously in distal and axial joint, instead of being a centripetal process. In summary, I have made three original observations in the ank/ank mice: the hypertrophic chondrocyte phenotype; activation of beta-catenin signaling and the simultaneous development of ankylosis in distal and axial joints. These mutant mice serve as valuable model for pre-clinical studies which enable modeling and testing of novel anti-ankylosis treatments.

Page generated in 0.0842 seconds