• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 10
  • Tagged with
  • 35
  • 35
  • 26
  • 15
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A game theoretical model for a collaborative e-learning platform on privacy awareness

Yusri, Rita 09 1900 (has links)
De nos jours, avec l'utilisation croissante des technologies numériques, l'éducation à la préservation de la vie privée joue un rôle important en particulier pour les adolescents. Bien que plusieurs plateformes d'apprentissage en ligne à la sensibilisation à la vie privée aient été mises en œuvre, elles sont généralement basées sur des techniques traditionnelles d'apprentissage. Plus particulièrement, ces plateformes ne permettent pas aux étudiants de coopérer et de partager leurs connaissances afin d’améliorer leur apprentissage ensemble. En d'autres termes, elles manquent d'interactions élève-élève. Des recherches récentes sur les méthodes d'apprentissage montrent que la collaboration entre élèves peut entraîner de meilleurs résultats d'apprentissage par rapport à d'autres approches. De plus, le domaine de la vie privée étant fortement lié à la vie sociale des adolescents, il est préférable de fournir un environnement d'apprentissage collaboratif où l’on peut enseigner la préservation de la vie privée, et en même temps, permettre aux étudiants de partager leurs connaissances. Il serait souhaitable que ces derniers puissent interagir les uns avec les autres, résoudre des questionnaires en collaboration et discuter de problèmes et de situations de confidentialité. À cet effet, ce travail propose « Teens-online », une plateforme d'apprentissage en ligne collaborative pour la sensibilisation à la vie privée. Le programme d'études fourni dans cette plateforme est basé sur le Référentiel de formation des élèves à la protection des données personnelles. De plus, la plateforme proposée est équipée d'un mécanisme d'appariement de partenaires basé sur la théorie des jeux. Ce mécanisme garantit un appariement élève-élève stable en fonction des besoins de l'élève (comportement et / ou connaissances). Ainsi, des avantages mutuels seront obtenus en minimisant les chances de coopérer avec des pairs incompatibles. Les résultats expérimentaux montrent que l'utilité moyenne obtenue en appliquant l'algorithme proposé est beaucoup plus élevée que celle obtenue en utilisant d'autres mécanismes d'appariement. Les résultats suggèrent qu'en adoptant l'approche proposée, chaque élève peut être jumelé avec des partenaires optimaux, qui obtiennent également en retour des résultats d'apprentissage plus élevés. / Nowadays, with the increasing use of digital technologies, especially for teenagers, privacy education plays an important role in their lives. While several e-learning platforms for privacy awareness training have been implemented, they are typically based on traditional learning techniques. In particular, these platforms do not allow students to cooperate and share knowledge with each other in order to achieve mutual benefits and improve learning outcomes. In other words, they lack student-student interaction. Recent research on learning methods shows that the collaboration among students can result in better learning outcomes compared to other learning approaches. Motivated by the above-mentioned facts, and since privacy domain is strongly linked to the social lives of teens, there is a pressing need for providing a collaborative learning platform for teaching privacy, and at the same time, allows students to share knowledge, interact with each other, solve quizzes collaboratively, and discuss privacy issues and situations. For this purpose, this work proposes “Teens-online”, a collaborative e-learning platform for privacy awareness. The curriculum provided in this platform is based on the Personal Data Protection Competency Framework for School Students. Moreover, the proposed platform is equipped with a partner-matching mechanism based on matching game theory. This mechanism guarantees a stable student-student matching according to a student's need (behavior and/or knowledge). Thus, mutual benefits will be attained by minimizing the chances of cooperating with incompatible students. Experimental results show that the average learning-related utility obtained by applying the proposed partner-matching algorithm is much higher than the average utility obtained using other matching mechanisms. The results also suggest that by adopting the proposed approach, each student can be paired with their optimal partners, which in turn helps them reach their highest learning outcomes.
32

Inference and applications for topic models / Inférence et applications pour les modèles thématiques

Dupuy, Christophe 30 June 2017 (has links)
La plupart des systèmes de recommandation actuels se base sur des évaluations sous forme de notes (i.e., chiffre entre 0 et 5) pour conseiller un contenu (film, restaurant...) à un utilisateur. Ce dernier a souvent la possibilité de commenter ce contenu sous forme de texte en plus de l'évaluer. Il est difficile d'extraire de l'information d'un texte brut tandis qu'une simple note contient peu d'information sur le contenu et l'utilisateur. Dans cette thèse, nous tentons de suggérer à l'utilisateur un texte lisible personnalisé pour l'aider à se faire rapidement une opinion à propos d'un contenu. Plus spécifiquement, nous construisons d'abord un modèle thématique prédisant une description de film personnalisée à partir de commentaires textuels. Notre modèle sépare les thèmes qualitatifs (i.e., véhiculant une opinion) des thèmes descriptifs en combinant des commentaires textuels et des notes sous forme de nombres dans un modèle probabiliste joint. Nous évaluons notre modèle sur une base de données IMDB et illustrons ses performances à travers la comparaison de thèmes. Nous étudions ensuite l'inférence de paramètres dans des modèles à variables latentes à grande échelle, incluant la plupart des modèles thématiques. Nous proposons un traitement unifié de l'inférence en ligne pour les modèles à variables latentes à partir de familles exponentielles non-canoniques et faisons explicitement apparaître les liens existants entre plusieurs méthodes fréquentistes et Bayesiennes proposées auparavant. Nous proposons aussi une nouvelle méthode d'inférence pour l'estimation fréquentiste des paramètres qui adapte les méthodes MCMC à l'inférence en ligne des modèles à variables latentes en utilisant proprement un échantillonnage de Gibbs local. Pour le modèle thématique d'allocation de Dirichlet latente, nous fournissons une vaste série d'expériences et de comparaisons avec des travaux existants dans laquelle notre nouvelle approche est plus performante que les méthodes proposées auparavant. Enfin, nous proposons une nouvelle classe de processus ponctuels déterminantaux (PPD) qui peut être manipulée pour l'inférence et l'apprentissage de paramètres en un temps potentiellement sous-linéaire en le nombre d'objets. Cette classe, basée sur une factorisation spécifique de faible rang du noyau marginal, est particulièrement adaptée à une sous-classe de PPD continus et de PPD définis sur un nombre exponentiel d'objets. Nous appliquons cette classe à la modélisation de documents textuels comme échantillons d'un PPD sur les phrases et proposons une formulation du maximum de vraisemblance conditionnel pour modéliser les proportions de thèmes, ce qui est rendu possible sans aucune approximation avec notre classe de PPD. Nous présentons une application à la synthèse de documents avec un PPD sur 2 à la puissance 500 objets, où les résumés sont composés de phrases lisibles. / Most of current recommendation systems are based on ratings (i.e. numbers between 0 and 5) and try to suggest a content (movie, restaurant...) to a user. These systems usually allow users to provide a text review for this content in addition to ratings. It is hard to extract useful information from raw text while a rating does not contain much information on the content and the user. In this thesis, we tackle the problem of suggesting personalized readable text to users to help them make a quick decision about a content. More specifically, we first build a topic model that predicts personalized movie description from text reviews. Our model extracts distinct qualitative (i.e., which convey opinion) and descriptive topics by combining text reviews and movie ratings in a joint probabilistic model. We evaluate our model on an IMDB dataset and illustrate its performance through comparison of topics. We then study parameter inference in large-scale latent variable models, that include most topic models. We propose a unified treatment of online inference for latent variable models from a non-canonical exponential family, and draw explicit links between several previously proposed frequentist or Bayesian methods. We also propose a novel inference method for the frequentist estimation of parameters, that adapts MCMC methods to online inference of latent variable models with the proper use of local Gibbs sampling.~For the specific latent Dirichlet allocation topic model, we provide an extensive set of experiments and comparisons with existing work, where our new approach outperforms all previously proposed methods. Finally, we propose a new class of determinantal point processes (DPPs) which can be manipulated for inference and parameter learning in potentially sublinear time in the number of items. This class, based on a specific low-rank factorization of the marginal kernel, is particularly suited to a subclass of continuous DPPs and DPPs defined on exponentially many items. We apply this new class to modelling text documents as sampling a DPP of sentences, and propose a conditional maximum likelihood formulation to model topic proportions, which is made possible with no approximation for our class of DPPs. We present an application to document summarization with a DPP on 2 to the power 500 items, where the summaries are composed of readable sentences.
33

Agrégation de prédicteurs pour des séries temporelles, optimalité dans un contexte localement stationnaire / Aggregation of time series predictors, optimality in a locally stationary context

Sànchez Pérez, Andrés 16 September 2015 (has links)
Cette thèse regroupe nos résultats sur la prédiction de séries temporelles dépendantes. Le document comporte trois chapitres principaux où nous abordons des problèmes différents. Le premier concerne l’agrégation de prédicteurs de décalages de Bernoulli Causales, en adoptant une approche Bayésienne. Le deuxième traite de l’agrégation de prédicteurs de ce que nous définissions comme processus sous-linéaires. Une attention particulaire est portée aux processus autorégressifs localement stationnaires variables dans le temps, nous examinons un schéma de prédiction adaptative pour eux. Dans le dernier chapitre nous étudions le modèle de régression linéaire pour une classe générale de processus localement stationnaires. / This thesis regroups our results on dependent time series prediction. The work is divided into three main chapters where we tackle different problems. The first one is the aggregation of predictors of Causal Bernoulli Shifts using a Bayesian approach. The second one is the aggregation of predictors of what we define as sub-linear processes. Locally stationary time varying autoregressive processes receive a particular attention; we investigate an adaptive prediction scheme for them. In the last main chapter we study the linear regression problem for a general class of locally stationary processes.
34

Conceptualisation de l’activité pédagogique en contexte d’apprentissage hybride et développement professionnel des enseignant(e)s universitaires

Koné, El Hadji Yaya 05 1900 (has links)
L’intégration des nouvelles technologies en enseignement supérieur ne devrait pas être vue comme un simple effet de mode, mais plutôt comme un cadre de réflexion sur les orientations nouvelles à donner à l’Université du 21ème siècle, en termes de culture institutionnelle, de ressources organisationnelles et d’opérationnalisation d’objectifs de recherche et d’enseignement (Duderstadt et al, 2002 ; Guri-Rosenblit, 2005). En effet, l’émergence d’une nouvelle tendance de formation post-secondaire, qu’est l’intégration des solutions virtuelles au présentiel, n’est pas sans incidences sur les pratiques enseignantes. Or, la littérature n’offre pas de modèles descriptifs satisfaisants permettant de mieux saisir la pertinence des liens entre l’enseignement en contexte d’apprentissage hybride et le développement professionnel des enseignants universitaires. Aussi avons-nous procédé par des observations participantes de deux cours en sciences de la gestion à HEC Montréal, dans les programmes de certificat de premier cycle ainsi que par des entretiens d’explicitation et d’autoconfrontation, pendant toute la session d’automne 2014, pour respectivement recueillir des données sur les pratiques réelles d’un maître d’enseignement, en sociologie du travail, et d’une chargée de cours, en gestion de projets. Notre analyse du corpus, par catégorisations conceptualisantes, a permis la production d’énoncés nomologiques rendant compte de la dynamique de relations entre ces deux phénomènes. Sur le plan scientifique, elle a apporté un éclairage nouveau sur les processus de construction identitaire professionnelle en pédagogie universitaire, en regard des mutations technologiques, socioculturelles et économiques que subissent l’Université, en général, et les pratiques enseignantes et étudiantes, en particulier. L’approche inductive utilisée a donc permis de définir la structure des interactions des deux phénomènes, selon la perspective des deux enseignants, et d’élaborer des modèles d’intervention enracinés dans leurs pratiques quotidiennes. Aussi sur le plan social, ces modèles sont-ils l’expression d’une grammaire de la pensée et de l’action, ancrée dans les valeurs des enseignants eux-mêmes. Nous avons pris en compte le paradigme de la tâche réelle, versus celui de la tâche prescrite, en termes de mise en œuvre concrète des processus pédagogiques, pour rendre les résultats de cette recherche signifiants pour la pratique. Les modèles, qui ont émergé de notre configuration de la pensée dialogique des participants, peuvent être intégrés à la formation des enseignants universitaires en contexte de bimodalisation de l’Université. / The integration of new technologies in higher education should not be seen as a mere fad, but rather a framework for redesigning the new orientations to be given to the University of the 21st century, in terms of institutional culture, organizational resources and achieving the objectives of research and teaching programs. Indeed, the emergence of a new trend of higher education, that is blended learning, has impacts on the pedagogical practices. Yet, there are no satisfactory models in the literature that describes the link pertaining to the relationship between teaching in the context of blended learning and faculty development. Throughout the whole semester of fall 2014, we collected data, by the means of participant observations and self-confrontation interviews, on the teaching activities of one full-time lecturer, in sociology of work, and one part-time lecturer, in project management, with one undergraduate class of each lecturer in the programs of certificate at HEC Montreal. The data analysis, using the conceptual categorizations, brought about theoretical statements underpinning the dynamics of the relationships between the phenomena of blended learning and faculty development. Scientifically, our research has shed a new light on the processes of professional identity construction in faculty development, regarding the technological, sociocultural and economic changes that the University, in general, and, especially, the teaching and learning practices undergo. Our inductive approach has helped to elucidate the structure of the interactions of the two phenomena, from the point of view of the two lecturers, and to construct models of pedagogical practices rooted in their daily teachings. Therefore, socially, these models translate a grammar of thought and action, anchored in the very values of the lecturers. We took into consideration the paradigm of the actual task, versus that of the prescribed task, in terms of implementation of the pedagogical processes, so that the results of this study be meaningful to the practice. The emerging models, from our redesign of the dialogical thinking processes of the two lecturers, can be used for the training of the faculty integrating online solutions to face-face instructions.
35

Aide à la décision médicale et télémédecine dans le suivi de l’insuffisance cardiaque / Medical decision support and telemedecine in the monitoring of heart failure

Duarte, Kevin 10 December 2018 (has links)
Cette thèse s’inscrit dans le cadre du projet "Prendre votre cœur en mains" visant à développer un dispositif médical d’aide à la prescription médicamenteuse pour les insuffisants cardiaques. Dans une première partie, une étude a été menée afin de mettre en évidence la valeur pronostique d’une estimation du volume plasmatique ou de ses variations pour la prédiction des événements cardiovasculaires majeurs à court terme. Deux règles de classification ont été utilisées, la régression logistique et l’analyse discriminante linéaire, chacune précédée d’une phase de sélection pas à pas des variables. Trois indices permettant de mesurer l’amélioration de la capacité de discrimination par ajout du biomarqueur d’intérêt ont été utilisés. Dans une seconde partie, afin d’identifier les patients à risque de décéder ou d’être hospitalisé pour progression de l’insuffisance cardiaque à court terme, un score d’événement a été construit par une méthode d’ensemble, en utilisant deux règles de classification, la régression logistique et l’analyse discriminante linéaire de données mixtes, des échantillons bootstrap et en sélectionnant aléatoirement les prédicteurs. Nous définissons une mesure du risque d’événement par un odds-ratio et une mesure de l’importance des variables et des groupes de variables. Nous montrons une propriété de l’analyse discriminante linéaire de données mixtes. Cette méthode peut être mise en œuvre dans le cadre de l’apprentissage en ligne, en utilisant des algorithmes de gradient stochastique pour mettre à jour en ligne les prédicteurs. Nous traitons le problème de la régression linéaire multidimensionnelle séquentielle, en particulier dans le cas d’un flux de données, en utilisant un processus d’approximation stochastique. Pour éviter le phénomène d’explosion numérique et réduire le temps de calcul pour prendre en compte un maximum de données entrantes, nous proposons d’utiliser un processus avec des données standardisées en ligne au lieu des données brutes et d’utiliser plusieurs observations à chaque étape ou toutes les observations jusqu’à l’étape courante sans avoir à les stocker. Nous définissons trois processus et en étudions la convergence presque sûre, un avec un pas variable, un processus moyennisé avec un pas constant, un processus avec un pas constant ou variable et l’utilisation de toutes les observations jusqu’à l’étape courante. Ces processus sont comparés à des processus classiques sur 11 jeux de données. Le troisième processus à pas constant est celui qui donne généralement les meilleurs résultats / This thesis is part of the "Handle your heart" project aimed at developing a drug prescription assistance device for heart failure patients. In a first part, a study was conducted to highlight the prognostic value of an estimation of plasma volume or its variations for predicting major short-term cardiovascular events. Two classification rules were used, logistic regression and linear discriminant analysis, each preceded by a stepwise variable selection. Three indices to measure the improvement in discrimination ability by adding the biomarker of interest were used. In a second part, in order to identify patients at short-term risk of dying or being hospitalized for progression of heart failure, a short-term event risk score was constructed by an ensemble method, two classification rules, logistic regression and linear discriminant analysis of mixed data, bootstrap samples, and by randomly selecting predictors. We define an event risk measure by an odds-ratio and a measure of the importance of variables and groups of variables using standardized coefficients. We show a property of linear discriminant analysis of mixed data. This methodology for constructing a risk score can be implemented as part of online learning, using stochastic gradient algorithms to update online the predictors. We address the problem of sequential multidimensional linear regression, particularly in the case of a data stream, using a stochastic approximation process. To avoid the phenomenon of numerical explosion which can be encountered and to reduce the computing time in order to take into account a maximum of arriving data, we propose to use a process with online standardized data instead of raw data and to use of several observations per step or all observations until the current step. We define three processes and study their almost sure convergence, one with a variable step-size, an averaged process with a constant step-size, a process with a constant or variable step-size and the use of all observations until the current step without storing them. These processes are compared to classical processes on 11 datasets. The third defined process with constant step-size typically yields the best results

Page generated in 0.0633 seconds