• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 39
  • 19
  • Tagged with
  • 126
  • 126
  • 106
  • 75
  • 53
  • 51
  • 51
  • 51
  • 48
  • 48
  • 48
  • 41
  • 31
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Utilisation de l’intelligence artificielle pour identifier les marqueurs de la démence dans le trouble comportemental en sommeil paradoxal

Mekki Berrada, Loubna 08 1900 (has links)
La démence à corps de Lewy (DCL) et la maladie de Parkinson (MP) sont des maladies neurodégénératives touchant des milliers de Canadiens et leur prévalence croît avec l’âge. La MP et la DCL partagent la même pathophysiologie, mais se distinguent par l’ordre de manifestation des symptômes : la DCL se caractérise d’abord par l’apparition d’un trouble neurocognitif majeur (démence), tandis que la MP se manifeste initialement par un parkinsonisme. De plus, jusqu’à 80% des patients avec la MP développeront une démence (MPD). Il est désormais établi que le trouble comportemental en sommeil paradoxal idiopathique (TCSPi) constitue un puissant prédicteur de la DCL et la MP. En effet, cette parasomnie, marquée par des comportements indésirables durant le sommeil, est considérée comme un stade prodromal des synucléinopathies, telles que la MP, la DCL et l'atrophie multisystémique (AMS). Ainsi, la majorité des patients atteints d’un TCSPi développeront une synucléinopathie. Malgré les avancées scientifiques, les causes du TCSPi, de la MP et de la DCL demeurent inconnues et aucun traitement ne parvient à freiner ou à arrêter la neurodégénérescence. De plus, ces pathologies présentent une grande hétérogénéité dans l’apparition et la progression des divers symptômes. Face à ces défis, la recherche vise à mieux cerner les phases précoces/initiales et les trajectoires évolutives de ces maladies neurodégénératives afin d’intervenir le plus précocement possible dans leur développement. C’est pourquoi le TCSPi suscite un intérêt majeur en tant que fenêtre d'opportunités pour tester l’efficacité des thérapies neuroprotectrices contre les synucléinopathies, permettant d'agir avant que la perte neuronale ne devienne irréversible. Le TCSPi offre ainsi une occasion unique d'améliorer la détection de la démence et le suivi des individus à haut risque de déclin cognitif. D'où l'importance cruciale de pouvoir généraliser les résultats issus de la recherche sur de petites cohortes à l'ensemble de la population. Sur le plan de la cognition, les études longitudinales sur le TCSPi ont montré que les atteintes des fonctions exécutives, de la mémoire verbale et de l'attention sont les plus discriminantes pour différencier les individus qui développeront une démence de ceux qui resteront idiopathiques. De plus, un grand nombre de patients TCSPi souffrent d’un trouble neurocognitif mineur ou trouble cognitif léger (TCL), généralement considéré comme un stade précurseur de la démence. Les recherches actuelles sur les données cognitives chez cette population offrent des perspectives prometteuses, mais reposent sur des approches statistiques classiques qui limitent leur validation et généralisation. Bien qu'elles offrent une précision élevée (80 à 85%) pour détecter les patients à risque de déclin cognitif, une amélioration est nécessaire pour étendre l'utilisation de ces marqueurs à une plus large échelle. Depuis les années 2000, l'accroissement de la puissance de calcul et l'accès à davantage de ressources de mémoire ont suscité un intérêt accru pour les algorithmes d'apprentissage machine (AM). Ces derniers visent à généraliser les résultats à une population plus vaste en entraînant des modèles sur une partie des données et en les testant sur une autre, validant ainsi leur application clinique. Jusqu'à présent, aucune étude n'a évalué les apports de l'AM pour la prédiction de l'évolution des synucléinopathies en se penchant sur le potentiel de généralisation, et donc d'application clinique, à travers l'usage d'outils non invasifs et accessibles ainsi que de techniques de validation de modèles (model validation). De plus, aucune étude n'a exploré l'utilisation de l'AM associée à des méthodes de généralisation sur des données neuropsychologiques longitudinales pour élaborer un modèle prédictif de la progression des déficits cognitifs dans le TCSPi. L’objectif général de cette thèse est d’étudier l’apport de l’AM pour analyser l’évolution du profil cognitif de patients atteints d’un TCSPi. Le premier chapitre de cette thèse présente le cadre théorique qui a guidé l’élaboration des objectifs et hypothèses de recherche. Le deuxième chapitre est à deux volets (articles). Le premier vise à fournir une vue d'ensemble de la littérature des études ayant utilisé l'AM (avec des méthodes de généralisation) pour prédire l'évolution des synucléinopathies vers une démence, ainsi que les lacunes à combler. Le deuxième volet vise à explorer et utiliser pour la première fois l'AM sur des données cliniques et cognitifs pour prédire la progression vers la démence dans le TCSPi, dans un devis longitudinal. Enfin, le dernier chapitre de la thèse présente une discussion et une conclusion générale, comprenant un résumé des deux articles, ainsi que les implications théoriques, les forces, les limites et les orientations futures. / Lewy body dementia (LBD) and Parkinson's disease (PD) are neurodegenerative diseases affecting thousands of Canadians, and their prevalence increases with age. PD and DLB share the same pathophysiology, but differ in the order of symptom manifestation: DLB is characterized first by the onset of a major neurocognitive disorder (dementia), whereas PD initially manifests as parkinsonism. Moreover, up to 80% of PD patients will go on to develop dementia (PDD). It is established that idiopathic REM sleep behavior disorder (iRBD) is a powerful predictor of DLB and PD. Indeed, this parasomnia, marked by undesirable behaviors during sleep, is considered a prodromal stage of synucleinopathies, such as PD, DLB and multisystem atrophy (MSA). Therefore, the majority of patients with iRBD will develop synucleinopathy. Despite scientific advancements, the causes of iRBD, PD, and DLB remain unknown and no treatment has been able to slow or halt neurodegeneration. Furthermore, these pathologies display great heterogeneity in the onset and progression of various symptoms. Faced with these challenges, research aims to better understand the early/initial stages and the progressive trajectories of these neurodegenerative diseases in order to intervene as early as possible in their development. This is why iRBD garners major interest as a window of opportunities to test the effectiveness of neuroprotective therapies against synucleinopathies, enabling action to be taken before neuronal loss becomes irreversible. iRBD thus provides a unique opportunity to improve dementia detection and monitoring of individuals at high risk of cognitive decline. Hence the crucial importance of being able to generalize results of research on small cohorts to the entire population. In terms of cognition, longitudinal studies on iRBD have shown that impairments in executive functions, verbal memory, and attention are the most discriminating in differencing between individuals who will develop dementia from those who will remain idiopathic. In addition, many iRBD patients suffer from a mild neurocognitive disorder or mild cognitive impairment (MCI), generally considered as a precursor stage of dementia. Current research on cognitive data in this population offers promising prospects, but relies on traditional statistical approaches that limit their validation and generalizability. While they provide high accuracy (80 to 85%) for detecting patients at risk of cognitive decline, improvement is needed to extend the use of these markers to a larger scale. Since the 2000s, increased computational power and access to more memory resources have sparked growing interest in machine learning (ML) algorithms. These aim to generalize results to a broader population by training models on a subset of data and testing them on another, thus validating their clinical application. To date, no study has assessed the contributions of ML for predicting the progression of synucleinopathies, focusing on the potential for generalization, and hence clinical application, through the use of non-invasive, accessible tools and model validation techniques. Moreover, no study has explored the use of ML in conjunction with generalization methods on longitudinal neuropsychological data to develop a predictive model of cognitive deficit progression in iRBD. The general objective of this thesis is to study the contribution of ML in analyzing the evolution of the cognitive profile of patients with iRBD. The first chapter of this thesis presents the theoretical framework that guided the formulation of the research objectives and hypotheses. The second chapter is in two parts (articles). The first aims to provide an overview of the literature of studies that have used ML (with generalization methods) to predict the progression of synucleinopathies to dementia, as well as the gaps that need to be filled. The second part aims to explore and use for the first time ML on clinical and cognitive data to predict progression to dementia in iRBD, in a longitudinal design. Finally, the last chapter of the thesis presents a discussion and a general conclusion, including a summary of the two articles, as well as theoretical implications, strengths, limitations, and future directions.
112

Compréhension de texte scientifique en orthodontie par traitement automatique de langage naturel

Rousseau, Maxime 09 1900 (has links)
Dans le domaine des soins de santé, la pratique basée sur les preuves s’est imposée comme la référence prédominante pour la prestation de soins de qualité. Cette approche se caractérise par l’utilisation des données scientifiques pour éclairer les décisions cliniques. Cependant, la croissance exponentielle du volume de littérature publiée dans le domaine de la dentisterie présente un défi en ce qui concerne l’évaluation efficace des données. Les récents progrès dans le domaine de l’intelligence artificielle se sont révélés être une avenue prometteuse pour relever ce défi. Parmi ces avancées, les modèles de langage (ML) se distinguent comme des outils ayant le potentiel d’aider les cliniciens et les chercheurs dans l’évaluation critique des données scientifiques, notamment dans un mécanisme de questions-réponses. Afin d’évaluer les capacités actuelles des ML à comprendre les requêtes des questions et à extraire des informations pertinentes à partir de textes scientifiques, nous introduisons OrthodonticQA (OQA). OQA marque une initiative pionnière, soit le premier jeu de données de questions- réponses propre au domaine de la dentisterie. Il est mis à la disposition du public sous une licence permissive. Cette étude a sélectionné une série de modèles de type Transformer dans le but de définir des références de performance pour OQA. Nous décrivons le cadre global employé à la fois dans la création et la curation de ce nouveau jeu de données. Notamment, l’incorporation des informations PICO (Population, Intervention, Comparison, Outcome) et de l’approche basée sur des patrons (template) pour la formulation de questions, soulignant ainsi leur applicabilité à travers divers sous-domaines de la dentisterie. Suite à leur affinage sur OQA, les ML ont été évalués sur un petit échantillon de test. Notre meilleur modèle atteint un score F1 moyen de 77,61 avec une déviation standard (DS) de 0,26 et un score d’évaluation humaine de 100/114 (87,72 %). De plus, lors de l’analyse des performances dans les sous-domaines de la discipline orthodontique, des variations intrigantes ont été observées. Cette étude met en évidence le potentiel significatif des ML dans ce domaine, mais confronte également les limites et les défis existants, notamment la nécessité impérative de normes de référence pour évaluer de manière exhaustive les capacités des ML dans le domaine spécialisé de la dentisterie. / In the realm of healthcare, evidence-based practice has emerged as the prevailing benchmark for delivering quality care. This approach is characterized by its reliance on the use of the most robust scientific data to inform clinical decisions. However, the exponential growth in the volume of published literature in the field of dentistry presents a challenge when it comes to the efficient assessment of evidence. Recent strides in the field of artificial intelligence have emerged as a promising avenue to address this challenge. Among these advancements, language models (LMs) stand out as tools with the potential to aid clinicians and researchers in the critical evaluation of scientific data. To gauge the present capabilities of LMs in comprehending queries and extracting pertinent information from scientific texts, we introduce OrthodonticQA (OQA). OQA marks a pioneering initiative, serving as the inaugural question-answering dataset in the domain of dentistry. It is made accessible to the public under a permissive license. This study selected a series of Transformer-based models aimed to delineate performance benchmarks for OQA. We describe the overarching framework employed both in the creation and curation of this novel dataset. It offers a comprehensive examination of the incorporation of PICO (Population, Intervention, Comparison, Outcome) information and a template-based approach to the formulation of questions, thereby underscoring their applicability across diverse subfields within dentistry. Through the application of fine-tuning methodologies, the LMs underwent evaluation on a small designated test set. Our best model achieves an average F1 score of 77.61 with a standard deviation (SD) of 0.26 and a human evaluation score of 100/114 (87.72%). Furthermore, when performance was analyzed across subdomains within the orthodontic discipline, intriguing variations emerged, underscoring the dynamic nature of LM performance across different subject areas. This study not only highlights the significant potential of LMs in this domain but also confronts the existing limitations and challenges, notably the imperative need for benchmark standards to comprehensively assess the capabilities of LMs within the specialized field of dentistry.
113

Génération et reconnaissance de rythmes au moyen de réseaux de neurones à réservoir

Daouda, Tariq 08 1900 (has links)
Les fichiers sons qui accompagne mon document sont au format midi. Le programme que nous avons développés pour ce travail est en language Python. / Les réseaux de neurones à réservoir, dont le principe est de combiner un vaste réseau de neurones fixes avec un apprenant ne possédant aucune forme de mémoire, ont récemment connu un gain en popularité dans les communautés d’apprentissage machine, de traitement du signal et des neurosciences computationelles. Ces réseaux qui peuvent être classés en deux catégories : 1. les réseaux à états échoïques (ESN)[29] dont les activations des neurones sont des réels 2. les machines à états liquides (LSM)[43] dont les neurones possèdent des potentiels d’actions, ont été appliqués à différentes tâches [11][64][49][45][38] dont la génération de séquences mélodiques [30]. Dans le cadre de la présente recherche, nous proposons deux nouveaux modèles à base de réseaux de neurones à réservoir. Le premier est un modèle pour la reconnaissance de rythmes utilisant deux niveaux d’apprentissage, et avec lequel nous avons été en mesure d’obtenir des résultats satisfaisants tant au niveau de la reconnaissance que de la résistance au bruit. Le second modèle sert à l’apprentissage et à la génération de séquences périodiques. Ce modèle diffère du modèle génératif classique utilisé avec les ESN à la fois au niveau de ses entrées, puisqu’il possède une Horloge, ainsi qu’au niveau de l’algorithme d’apprentissage, puisqu’il utilise un algorithme que nous avons spécialement développé pour cette tache et qui se nomme "Orbite". La combinaison de ces deux éléments, nous a permis d’obtenir de bons résultats, pour la génération, le sur-apprentissage et l’extraction de données. Nous pensons également que ce modèle ouvre une fenêtre intéressante vers la réalisation d’un orchestre entièrement virtuel et nous proposons deux architectures possibles que pourrait avoir cet orchestre. Dans la dernière partie de ce travail nous présentons les outils que nous avons développés pour faciliter notre travail de recherche. / Reservoir computing, the combination of a recurrent neural network and one or more memoryless readout units, has seen recent growth in popularity in and machine learning, signal processing and computational neurosciences. Reservoir-based methods have been successfully applied to a wide range of time series problems [11][64][49][45][38] including music [30], and usually can be found in two flavours: Echo States Networks(ESN)[29], where the reservoir is composed of mean rates neurons, and Liquid Sates Machines (LSM),[43] where the reservoir is composed of spiking neurons. In this work, we propose two new models based upon the ESN architecture. The first one is a model for rhythm recognition that uses two levels of learning and with which we have been able to get satisfying results on both recognition and noise resistance. The second one is a model for learning and generating periodic sequences, with this model we introduced a new architecture for generative models based upon ESNs where the reservoir receives inputs from a clock, as well as a new learning algorithm that we called "Orbite". By combining these two elements within our model, we were able to get good results on generation, over-fitting and data extraction. We also believe that a combination of several instances of our model can serve as a basis for the elaboration of an entirely virtual orchestra, and we propose two architectures that this orchestra may have. In the last part of this work, we briefly present the tools that we have developed during our research.
114

Sequential Machine learning Approaches for Portfolio Management

Chapados, Nicolas 11 1900 (has links)
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs. / This thesis considers a number of approaches to make machine learning algorithms better suited to the sequential nature of financial portfolio management tasks. We start by considering the problem of the general composition of learning algorithms that must handle temporal learning tasks, in particular that of creating and efficiently updating the training sets in a sequential simulation framework. We enumerate the desiderata that composition primitives should satisfy, and underscore the difficulty of rigorously and efficiently reaching them. We follow by introducing a set of algorithms that accomplish the desired objectives, presenting a case-study of a real-world complex learning system for financial decision-making that uses those techniques. We then describe a general method to transform a non-Markovian sequential decision problem into a supervised learning problem using a K-best paths search algorithm. We consider an application in financial portfolio management where we train a learning algorithm to directly optimize a Sharpe Ratio (or other risk-averse non-additive) utility function. We illustrate the approach by demonstrating extensive experimental results using a neural network architecture specialized for portfolio management and compare against well-known alternatives. Finally, we introduce a functional representation of time series which allows forecasts to be performed over an unspecified horizon with progressively-revealed information sets. By virtue of using Gaussian processes, a complete covariance matrix between forecasts at several time-steps is available. This information is put to use in an application to actively trade price spreads between commodity futures contracts. The approach delivers impressive out-of-sample risk-adjusted returns after transaction costs on a portfolio of 30 spreads.
115

Génération et reconnaissance de rythmes au moyen de réseaux de neurones à réservoir

Daouda, Tariq 08 1900 (has links)
Les réseaux de neurones à réservoir, dont le principe est de combiner un vaste réseau de neurones fixes avec un apprenant ne possédant aucune forme de mémoire, ont récemment connu un gain en popularité dans les communautés d’apprentissage machine, de traitement du signal et des neurosciences computationelles. Ces réseaux qui peuvent être classés en deux catégories : 1. les réseaux à états échoïques (ESN)[29] dont les activations des neurones sont des réels 2. les machines à états liquides (LSM)[43] dont les neurones possèdent des potentiels d’actions, ont été appliqués à différentes tâches [11][64][49][45][38] dont la génération de séquences mélodiques [30]. Dans le cadre de la présente recherche, nous proposons deux nouveaux modèles à base de réseaux de neurones à réservoir. Le premier est un modèle pour la reconnaissance de rythmes utilisant deux niveaux d’apprentissage, et avec lequel nous avons été en mesure d’obtenir des résultats satisfaisants tant au niveau de la reconnaissance que de la résistance au bruit. Le second modèle sert à l’apprentissage et à la génération de séquences périodiques. Ce modèle diffère du modèle génératif classique utilisé avec les ESN à la fois au niveau de ses entrées, puisqu’il possède une Horloge, ainsi qu’au niveau de l’algorithme d’apprentissage, puisqu’il utilise un algorithme que nous avons spécialement développé pour cette tache et qui se nomme "Orbite". La combinaison de ces deux éléments, nous a permis d’obtenir de bons résultats, pour la génération, le sur-apprentissage et l’extraction de données. Nous pensons également que ce modèle ouvre une fenêtre intéressante vers la réalisation d’un orchestre entièrement virtuel et nous proposons deux architectures possibles que pourrait avoir cet orchestre. Dans la dernière partie de ce travail nous présentons les outils que nous avons développés pour faciliter notre travail de recherche. / Reservoir computing, the combination of a recurrent neural network and one or more memoryless readout units, has seen recent growth in popularity in and machine learning, signal processing and computational neurosciences. Reservoir-based methods have been successfully applied to a wide range of time series problems [11][64][49][45][38] including music [30], and usually can be found in two flavours: Echo States Networks(ESN)[29], where the reservoir is composed of mean rates neurons, and Liquid Sates Machines (LSM),[43] where the reservoir is composed of spiking neurons. In this work, we propose two new models based upon the ESN architecture. The first one is a model for rhythm recognition that uses two levels of learning and with which we have been able to get satisfying results on both recognition and noise resistance. The second one is a model for learning and generating periodic sequences, with this model we introduced a new architecture for generative models based upon ESNs where the reservoir receives inputs from a clock, as well as a new learning algorithm that we called "Orbite". By combining these two elements within our model, we were able to get good results on generation, over-fitting and data extraction. We also believe that a combination of several instances of our model can serve as a basis for the elaboration of an entirely virtual orchestra, and we propose two architectures that this orchestra may have. In the last part of this work, we briefly present the tools that we have developed during our research. / Les fichiers sons qui accompagne mon document sont au format midi. Le programme que nous avons développés pour ce travail est en language Python.
116

Learning in wireless sensor networks for energy-efficient environmental monitoring / Apprentissage dans les réseaux de capteurs pour une surveillance environnementale moins coûteuse en énergie

Le Borgne, Yann-Aël 30 April 2009 (has links)
Wireless sensor networks form an emerging class of computing devices capable of observing the world with an unprecedented resolution, and promise to provide a revolutionary instrument for environmental monitoring. Such a network is composed of a collection of battery-operated wireless sensors, or sensor nodes, each of which is equipped with sensing, processing and wireless communication capabilities. Thanks to advances in microelectronics and wireless technologies, wireless sensors are small in size, and can be deployed at low cost over different kinds of environments in order to monitor both over space and time the variations of physical quantities such as temperature, humidity, light, or sound. <p><p>In environmental monitoring studies, many applications are expected to run unattended for months or years. Sensor nodes are however constrained by limited resources, particularly in terms of energy. Since communication is one order of magnitude more energy-consuming than processing, the design of data collection schemes that limit the amount of transmitted data is therefore recognized as a central issue for wireless sensor networks.<p><p>An efficient way to address this challenge is to approximate, by means of mathematical models, the evolution of the measurements taken by sensors over space and/or time. Indeed, whenever a mathematical model may be used in place of the true measurements, significant gains in communications may be obtained by only transmitting the parameters of the model instead of the set of real measurements. Since in most cases there is little or no a priori information about the variations taken by sensor measurements, the models must be identified in an automated manner. This calls for the use of machine learning techniques, which allow to model the variations of future measurements on the basis of past measurements.<p><p>This thesis brings two main contributions to the use of learning techniques in a sensor network. First, we propose an approach which combines time series prediction and model selection for reducing the amount of communication. The rationale of this approach, called adaptive model selection, is to let the sensors determine in an automated manner a prediction model that does not only fits their measurements, but that also reduces the amount of transmitted data. <p><p>The second main contribution is the design of a distributed approach for modeling sensed data, based on the principal component analysis (PCA). The proposed method allows to transform along a routing tree the measurements taken in such a way that (i) most of the variability in the measurements is retained, and (ii) the network load sustained by sensor nodes is reduced and more evenly distributed, which in turn extends the overall network lifetime. The framework can be seen as a truly distributed approach for the principal component analysis, and finds applications not only for approximated data collection tasks, but also for event detection or recognition tasks. <p><p>/<p><p>Les réseaux de capteurs sans fil forment une nouvelle famille de systèmes informatiques permettant d'observer le monde avec une résolution sans précédent. En particulier, ces systèmes promettent de révolutionner le domaine de l'étude environnementale. Un tel réseau est composé d'un ensemble de capteurs sans fil, ou unités sensorielles, capables de collecter, traiter, et transmettre de l'information. Grâce aux avancées dans les domaines de la microélectronique et des technologies sans fil, ces systèmes sont à la fois peu volumineux et peu coûteux. Ceci permet leurs deploiements dans différents types d'environnements, afin d'observer l'évolution dans le temps et l'espace de quantités physiques telles que la température, l'humidité, la lumière ou le son.<p><p>Dans le domaine de l'étude environnementale, les systèmes de prise de mesures doivent souvent fonctionner de manière autonome pendant plusieurs mois ou plusieurs années. Les capteurs sans fil ont cependant des ressources limitées, particulièrement en terme d'énergie. Les communications radios étant d'un ordre de grandeur plus coûteuses en énergie que l'utilisation du processeur, la conception de méthodes de collecte de données limitant la transmission de données est devenue l'un des principaux défis soulevés par cette technologie. <p><p>Ce défi peut être abordé de manière efficace par l'utilisation de modèles mathématiques modélisant l'évolution spatiotemporelle des mesures prises par les capteurs. En effet, si un tel modèle peut être utilisé à la place des mesures, d'importants gains en communications peuvent être obtenus en utilisant les paramètres du modèle comme substitut des mesures. Cependant, dans la majorité des cas, peu ou aucune information sur la nature des mesures prises par les capteurs ne sont disponibles, et donc aucun modèle ne peut être a priori défini. Dans ces cas, les techniques issues du domaine de l'apprentissage machine sont particulièrement appropriées. Ces techniques ont pour but de créer ces modèles de façon autonome, en anticipant les mesures à venir sur la base des mesures passées. <p><p>Dans cette thèse, deux contributions sont principalement apportées permettant l'applica-tion de techniques d'apprentissage machine dans le domaine des réseaux de capteurs sans fil. Premièrement, nous proposons une approche qui combine la prédiction de série temporelle avec la sélection de modèles afin de réduire la communication. La logique de cette approche, appelée sélection de modèle adaptive, est de permettre aux unités sensorielles de determiner de manière autonome un modèle de prédiction qui anticipe correctement leurs mesures, tout en réduisant l'utilisation de leur radio.<p><p>Deuxièmement, nous avons conçu une méthode permettant de modéliser de façon distribuée les mesures collectées, qui se base sur l'analyse en composantes principales (ACP). La méthode permet de transformer les mesures le long d'un arbre de routage, de façon à ce que (i) la majeure partie des variations dans les mesures des capteurs soient conservées, et (ii) la charge réseau soit réduite et mieux distribuée, ce qui permet d'augmenter également la durée de vie du réseau. L'approche proposée permet de véritablement distribuer l'ACP, et peut être utilisée pour des applications impliquant la collecte de données, mais également pour la détection ou la classification d'événements. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
117

Détection et amélioration de l'état cognitif de l'apprenant

Ghali, Ramla 12 1900 (has links)
Cette thèse vise à détecter et améliorer l’état cognitif de l’apprenant. Cet état est défini par la capacité d’acquérir de nouvelles connaissances et de les stocker dans la mémoire. Nous nous sommes essentiellement intéressés à améliorer le raisonnement des apprenants, et ceci dans trois environnements : environnement purement cognitif Logique, jeu sérieux LewiSpace et jeu sérieux intelligent Inertia. La détection de cet état se fait essentiellement par des mesures physiologiques (en particulier les électroencéphalogrammes) afin d’avoir une idée sur les interactions des apprenants et l’évolution de leurs états mentaux. L’amélioration des performances des apprenants et de leur raisonnement est une clé pour la réussite de l’apprentissage. Dans une première partie, nous présentons l’implémentation de l’environnement cognitif logique. Nous décrivons des statistiques faites sur cet environnement. Nous avons collecté durant une étude expérimentale les données sur l’engagement, la charge cognitive et la distraction. Ces trois mesures se sont montrées efficaces pour la classification et la prédiction des performances des apprenants. Dans une deuxième partie, nous décrivons le jeu Lewispace pour l’apprentissage des diagrammes de Lewis. Nous avons mené une étude expérimentale et collecté les données des électroencéphalogrammes, des émotions et des traceurs de regard. Nous avons montré qu’il est possible de prédire le besoin d’aide dans cet environnement grâce à ces mesures physiologiques et des algorithmes d’apprentissage machine. Dans une troisième partie, nous clôturons la thèse en présentant des stratégies d’aide intégrées dans un jeu virtuel Inertia (jeu de physique). Cette dernière s’adapte selon deux mesures extraites des électroencéphalogrammes (l’engagement et la frustration). Nous avons montré que ce jeu permet d’augmenter le taux de réussite dans ses missions, la performance globale et par conséquent améliorer l’état cognitif de l’apprenant. / This thesis aims at detecting and enhancing the cognitive state of a learner. This state is measured by the ability to acquire new knowledge and store it in memory. Focusing on three types of environments to enhance reasoning: environment Logic, serious game LewiSpace and intelligent serious game Inertia. Physiological measures (in particular the electroencephalograms) have been taken in order to measure learners’ engagement and mental states. Improving learners’ reasoning is key for successful learning process. In a first part, we present the implementation of logic environment. We present statistics on this environment, with data collected during an experimental study. Three types of data: engagement, workload and distraction, these measures were effective and can predict and classify learner’s performance. In a second part, we describe the LewiSpace game, aimed at teaching Lewis diagrams. We conducted an experimental study and collected data from electroencephalograms, emotions and eye-tracking software. Combined with machine learning algorithms, it is possible to anticipate a learner’s need for help using these data. In a third part, we finish by presenting some assistance strategies in a virtual reality game called Inertia (to teach Physics). The latter adapts according to two measures extracted from electroencephalograms (frustration and engagement). Based on our study, we were able to enhance the learner’s success rate on game missions, by improving its cognitive state.
118

Reconnaissance de postures humaines par fusion de la silhouette et de l'ombre dans l'infrarouge

Gouiaa, Rafik 01 1900 (has links)
Les systèmes multicaméras utilisés pour la vidéosurveillance sont complexes, lourds et coûteux. Pour la surveillance d'une pièce, serait-il possible de les remplacer par un système beaucoup plus simple utilisant une seule caméra et une ou plusieurs sources lumineuses en misant sur les ombres projetées pour obtenir de l'information 3D ? Malgré les résultats intéressants offerts par les systèmes multicaméras, la quantité d'information à traiter et leur complexité limitent grandement leur usage. Dans le même contexte, nous proposons de simplifier ces systèmes en remplaçant une caméra par une source lumineuse. En effet, une source lumineuse peut être vue comme une caméra qui génère une image d'ombre révélant l'objet qui bloque la lumière. Notre système sera composé par une seule caméra et une ou plusieurs sources lumineuses infrarouges (invisibles à l'oeil). Malgré les difficultés prévues quant à l'extraction de l'ombre et la déformation et l'occultation de l'ombre par des obstacles (murs, meubles...), les gains sont multiples en utilisant notre système. En effet, on peut éviter ainsi les problèmes de synchronisation et de calibrage de caméras et réduire le coût en remplaçant des caméras par de simples sources infrarouges. Nous proposons deux approches différentes pour automatiser la reconnaissance de postures humaines. La première approche reconstruit la forme 3D d'une personne pour faire la reconnaissance de la posture en utilisant des descripteurs de forme. La deuxième approche combine directement l'information 2D (ombre+silhouette) pour faire la reconnaissance de postures. Scientifiquement, nous cherchons à prouver que l'information offerte par une silhouette et l'ombre générée par une source lumineuse est suffisante pour permettre la reconnaissance de postures humaines élémentaires (p.ex. debout, assise, couchée, penchée, etc.). Le système proposé peut être utilisé pour la vidéosurveillance d'endroits non encombrés tels qu'un corridor dans une résidence de personnes âgées (pour la détection des chutes p. ex.) ou d'une compagnie (pour la sécurité). Son faible coût permettrait un plus grand usage de la vidéosurveillance au bénéfice de la société. Au niveau scientifique, la démonstration théorique et pratique d'un tel système est originale et offre un grand potentiel pour la vidéosurveillance. / Human posture recognition (HPR) from video sequences is one of the major active research areas of computer vision. It is one step of the global process of human activity recognition (HAR) for behaviors analysis. Many HPR application systems have been developed including video surveillance, human-machine interaction, and the video retrieval. Generally, applications related to HPR can be achieved using mainly two approaches : single camera or multi-cameras. Despite the interesting performance achieved by multi-camera systems, their complexity and the huge information to be processed greatly limit their widespread use for HPR. The main goal of this thesis is to simplify the multi-camera system by replacing a camera by a light source. In fact, a light source can be seen as a virtual camera, which generates a cast shadow image representing the silhouette of the person that blocks the light. Our system will consist of a single camera and one or more infrared light sources. Despite some technical difficulties in cast shadow segmentation and cast shadow deformation because of walls and furniture, different advantages can be achieved by using our system. Indeed, we can avoid the synchronization and calibration problems of multiple cameras, reducing the cost of the system and the amount of processed data by replacing a camera by one light source. We introduce two different approaches in order to automatically recognize human postures. The first approach directly combines the person’s silhouette and cast shadow information, and uses 2D silhouette descriptor in order to extract discriminative features useful for HPR. The second approach is inspired from the shape from silhouette technique to reconstruct the visual hull of the posture using a set of cast shadow silhouettes, and extract informative features through 3D shape descriptor. Using these approaches, our goal is to prove the utility of the combination of person’s silhouette and cast shadow information for recognizing elementary human postures (stand, bend, crouch, fall,...) The proposed system can be used for video surveillance of uncluttered areas such as a corridor in a senior’s residence (for example, for the detection of falls) or in a company (for security). Its low cost may allow greater use of video surveillance for the benefit of society.
119

Sequential Machine learning Approaches for Portfolio Management

Chapados, Nicolas 11 1900 (has links)
No description available.
120

Apprentissage d'espaces sémantiques

Mesnil, Grégoire 01 1900 (has links)
No description available.

Page generated in 0.0789 seconds