• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Unified View of Local Learning : Theory and Algorithms for Enhancing Linear Models / Une Vue Unifiée de l'Apprentissage Local : Théorie et Algorithmes pour l'Amélioration de Modèles Linéaires

Zantedeschi, Valentina 18 December 2018 (has links)
Dans le domaine de l'apprentissage machine, les caractéristiques des données varient généralement dans l'espace des entrées : la distribution globale pourrait être multimodale et contenir des non-linéarités. Afin d'obtenir de bonnes performances, l'algorithme d'apprentissage devrait alors être capable de capturer et de s'adapter à ces changements. Même si les modèles linéaires ne parviennent pas à décrire des distributions complexes, ils sont réputés pour leur passage à l'échelle, en entraînement et en test, aux grands ensembles de données en termes de nombre d'exemples et de nombre de fonctionnalités. Plusieurs méthodes ont été proposées pour tirer parti du passage à l'échelle et de la simplicité des hypothèses linéaires afin de construire des modèles aux grandes capacités discriminatoires. Ces méthodes améliorent les modèles linéaires, dans le sens où elles renforcent leur expressivité grâce à différentes techniques. Cette thèse porte sur l'amélioration des approches d'apprentissage locales, une famille de techniques qui infère des modèles en capturant les caractéristiques locales de l'espace dans lequel les observations sont intégrées.L'hypothèse fondatrice de ces techniques est que le modèle appris doit se comporter de manière cohérente sur des exemples qui sont proches, ce qui implique que ses résultats doivent aussi changer de façon continue dans l'espace des entrées. La localité peut être définie sur la base de critères spatiaux (par exemple, la proximité en fonction d'une métrique choisie) ou d'autres relations fournies, telles que l'association à la même catégorie d'exemples ou un attribut commun. On sait que les approches locales d'apprentissage sont efficaces pour capturer des distributions complexes de données, évitant de recourir à la sélection d'un modèle spécifique pour la tâche. Cependant, les techniques de pointe souffrent de trois inconvénients majeurs :ils mémorisent facilement l'ensemble d'entraînement, ce qui se traduit par des performances médiocres sur de nouvelles données ; leurs prédictions manquent de continuité dans des endroits particuliers de l'espace ; elles évoluent mal avec la taille des ensembles des données. Les contributions de cette thèse examinent les problèmes susmentionnés dans deux directions : nous proposons d'introduire des informations secondaires dans la formulation du problème pour renforcer la continuité de la prédiction et atténuer le phénomène de la mémorisation ; nous fournissons une nouvelle représentation de l'ensemble de données qui tient compte de ses spécificités locales et améliore son évolutivité. Des études approfondies sont menées pour mettre en évidence l'efficacité de ces contributions pour confirmer le bien-fondé de leurs intuitions. Nous étudions empiriquement les performances des méthodes proposées tant sur des jeux de données synthétiques que sur des tâches réelles, en termes de précision et de temps d'exécution, et les comparons aux résultats de l'état de l'art. Nous analysons également nos approches d'un point de vue théorique, en étudiant leurs complexités de calcul et de mémoire et en dérivant des bornes de généralisation serrées. / In Machine Learning field, data characteristics usually vary over the space: the overall distribution might be multi-modal and contain non-linearities.In order to achieve good performance, the learning algorithm should then be able to capture and adapt to these changes. Even though linear models fail to describe complex distributions, they are renowned for their scalability, at training and at testing, to datasets big in terms of number of examples and of number of features. Several methods have been proposed to take advantage of the scalability and the simplicity of linear hypotheses to build models with great discriminatory capabilities. These methods empower linear models, in the sense that they enhance their expressive power through different techniques. This dissertation focuses on enhancing local learning approaches, a family of techniques that infers models by capturing the local characteristics of the space in which the observations are embedded. The founding assumption of these techniques is that the learned model should behave consistently on examples that are close, implying that its results should also change smoothly over the space. The locality can be defined on spatial criteria (e.g. closeness according to a selected metric) or other provided relations, such as the association to the same category of examples or a shared attribute. Local learning approaches are known to be effective in capturing complex distributions of the data, avoiding to resort to selecting a model specific for the task. However, state of the art techniques suffer from three major drawbacks: they easily memorize the training set, resulting in poor performance on unseen data; their predictions lack of smoothness in particular locations of the space;they scale poorly with the size of the datasets. The contributions of this dissertation investigate the aforementioned pitfalls in two directions: we propose to introduce side information in the problem formulation to enforce smoothness in prediction and attenuate the memorization phenomenon; we provide a new representation for the dataset which takes into account its local specificities and improves scalability. Thorough studies are conducted to highlight the effectiveness of the said contributions which confirmed the soundness of their intuitions. We empirically study the performance of the proposed methods both on toy and real tasks, in terms of accuracy and execution time, and compare it to state of the art results. We also analyze our approaches from a theoretical standpoint, by studying their computational and memory complexities and by deriving tight generalization bounds.
2

Méthodes ensembliste pour des problèmes de classification multi-vues et multi-classes avec déséquilibres / Tackling the uneven views problem with cooperation based ensemble learning methods

Koco, Sokol 16 December 2013 (has links)
De nos jours, dans plusieurs domaines, tels que la bio-informatique ou le multimédia, les données peuvent être représentées par plusieurs ensembles d'attributs, appelés des vues. Pour une tâche de classification donnée, nous distinguons deux types de vues : les vues fortes sont celles adaptées à la tâche, les vues faibles sont adaptées à une (petite) partie de la tâche ; en classification multi-classes, chaque vue peut s'avérer forte pour reconnaître une classe, et faible pour reconnaître d’autres classes : une telle vue est dite déséquilibrée. Les travaux présentés dans cette thèse s'inscrivent dans le cadre de l'apprentissage supervisé et ont pour but de traiter les questions d'apprentissage multi-vue dans le cas des vues fortes, faibles et déséquilibrées. La première contribution de cette thèse est un algorithme d'apprentissage multi-vues théoriquement fondé sur le cadre de boosting multi-classes utilisé par AdaBoost.MM. La seconde partie de cette thèse concerne la mise en place d'un cadre général pour les méthodes d'apprentissage de classes déséquilibrées (certaines classes sont plus représentées que les autres). Dans la troisième partie, nous traitons le problème des vues déséquilibrées en combinant notre approche des classes déséquilibrées et la coopération entre les vues mise en place pour appréhender la classification multi-vues. Afin de tester les méthodes sur des données réelles, nous nous intéressons au problème de classification d'appels téléphoniques, qui a fait l'objet du projet ANR DECODA. Ainsi chaque partie traite différentes facettes du problème. / Nowadays, in many fields, such as bioinformatics or multimedia, data may be described using different sets of features, also called views. For a given classification task, we distinguish two types of views:strong views, which are suited for the task, and weak views suited for a (small) part of the task; in multi-class learning, a view can be strong with respect to some (few) classes and weak for the rest of the classes: these are imbalanced views. The works presented in this thesis fall in the supervised learning setting and their aim is to address the problem of multi-view learning under strong, weak and imbalanced views, regrouped under the notion of uneven views. The first contribution of this thesis is a multi-view learning algorithm based on the same framework as AdaBoost.MM. The second part of this thesis proposes a unifying framework for imbalanced classes supervised methods (some of the classes are more represented than others). In the third part of this thesis, we tackle the uneven views problem through the combination of the imbalanced classes framework and the between-views cooperation used to take advantage of the multiple views. In order to test the proposed methods on real-world data, we consider the task of phone calls classifications, which constitutes the subject of the ANR DECODA project. Each part of this thesis deals with different aspects of the problem.

Page generated in 0.0712 seconds