Spelling suggestions: "subject:"aproximantes dde padé"" "subject:"aproximantes dde adé""
1 |
Percolação direcionada em redes regulares bidimensionais. / Directed percolation on two-dimensional regular lattices.Neves, Ubiraci Pereira da Costa 24 April 1992 (has links)
Utilizando uma técnica de matriz de transferência, expandimos em série a probabilidade de percolação P(q) para o problema da percolação por sítio na rede quadrada direcionada. Nosso método revela uma inesperada conexão entre este problema e o da enumeração dos modos de se dissecar uma bola. Mostramos que o método pode também ser usado para se expandir em série o tamanho médio do cluster S (p) . Uma análise baseada nos aproximantes de Padé fornece estimativas do valor crítico pc, e também do expoente crítico β. / Using a transfer matrix technique we obtain an extended series expansion of the percolation probability P(q) for the directed site percolation problem on the square lattice. Our method reveals an up to now unsuspected connection between this problem and the enumeration of the ways of dissecting a ball. We show that the method can also be used to determine a series expansion for the mean cluster size S(p). An analysis based on Padé approximants gives estimates of the critical threshold pc, and also of the critical exponent β.
|
2 |
Aproximantes de Padé, aproximantes de Chebyshev-Padé e aproximantes de Fourier-Padé : Localização de singularidades/Polos espaciais em EDP'sSá, Vera Lisa Mateus January 2004 (has links)
Tese de mestrado. Faculdade de Engenharia. Universidade do Porto. 1998
|
3 |
Percolação direcionada em redes regulares bidimensionais. / Directed percolation on two-dimensional regular lattices.Ubiraci Pereira da Costa Neves 24 April 1992 (has links)
Utilizando uma técnica de matriz de transferência, expandimos em série a probabilidade de percolação P(q) para o problema da percolação por sítio na rede quadrada direcionada. Nosso método revela uma inesperada conexão entre este problema e o da enumeração dos modos de se dissecar uma bola. Mostramos que o método pode também ser usado para se expandir em série o tamanho médio do cluster S (p) . Uma análise baseada nos aproximantes de Padé fornece estimativas do valor crítico pc, e também do expoente crítico β. / Using a transfer matrix technique we obtain an extended series expansion of the percolation probability P(q) for the directed site percolation problem on the square lattice. Our method reveals an up to now unsuspected connection between this problem and the enumeration of the ways of dissecting a ball. We show that the method can also be used to determine a series expansion for the mean cluster size S(p). An analysis based on Padé approximants gives estimates of the critical threshold pc, and also of the critical exponent β.
|
4 |
Uso de aproximantes de Padé na estimação de parâmetros modais em estruturas de grande porte. / Use of Padé approximants for modal parameters estimation on large scale structures.Luiz Antonio Barbosa Coelho 18 December 2008 (has links)
Este trabalho apresenta um novo algoritmo para a estimação de frequências e amortecimentos de vibrações, baseado em aproximantes de Padé, a partir da análise de sinais temporais oriundos de estruturas de grande porte. O algoritmo se baseia nas propriedades de convergência dos aproximantes de Padé, que garantem a existência de pólos que representam corretamente as componentes senoidais do sinal, e numa peculiar distribuição de pólos e zeros espúrios que decorrem da sobre-determinação do aproximante. O comportamento estatístico do algoritmo é estudado através de experimentos numéricos e sua aplicação em um caso real é feita. / This work introduces a novel estimation technique for vibration frequency and damping estimation, based on Padé approximants, and using time series taken from large structures. The algorithm is based on convergence properties of Padé approximants that assures the existence of real poles representing the sinusoidal components of the signal, and a remarkable distribution of stray poles and zeros, resulting from the approximant overdetermination. Its statistical behavior is analyzed through numerical experiments and an application for a real structure is provided as example.
|
5 |
Uso de aproximantes de Padé na estimação de parâmetros modais em estruturas de grande porte. / Use of Padé approximants for modal parameters estimation on large scale structures.Coelho, Luiz Antonio Barbosa 18 December 2008 (has links)
Este trabalho apresenta um novo algoritmo para a estimação de frequências e amortecimentos de vibrações, baseado em aproximantes de Padé, a partir da análise de sinais temporais oriundos de estruturas de grande porte. O algoritmo se baseia nas propriedades de convergência dos aproximantes de Padé, que garantem a existência de pólos que representam corretamente as componentes senoidais do sinal, e numa peculiar distribuição de pólos e zeros espúrios que decorrem da sobre-determinação do aproximante. O comportamento estatístico do algoritmo é estudado através de experimentos numéricos e sua aplicação em um caso real é feita. / This work introduces a novel estimation technique for vibration frequency and damping estimation, based on Padé approximants, and using time series taken from large structures. The algorithm is based on convergence properties of Padé approximants that assures the existence of real poles representing the sinusoidal components of the signal, and a remarkable distribution of stray poles and zeros, resulting from the approximant overdetermination. Its statistical behavior is analyzed through numerical experiments and an application for a real structure is provided as example.
|
6 |
Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares / not availableFlamino, Reinaldo de Sales 21 September 2001 (has links)
Este trabalho propõe uma extensão do método de propagação de feixe (BPM - Beam Propagation Method) para a análise de guias de ondas ópticos e acopladores baseados em materiais não-lineares do tipo Kerr. Este método se destina à investigação de estruturas onde a utilização da equação escalar de Helmholtz (EEH) em seu limite paraxial não mais se aplica. Os métodos desenvolvidos para este fim são denominados na literatura como métodos de propagação de feixe de ângulo largo. O formalismo aqui desenvolvido é baseado na técnica das diferenças finitas e nos esquemas de Crank-Nicholson (CN) e Douglas generalizado (GD). Estes esquemas apresentam como característica o fato de apresentarem um erro de truncamento em relação ao passo de discretização transversal, Δx, proporcional a O(Δx2) para o primeiro e O(Δx4). A convergência do método em ambos esquemas é otimizada pela utilização de um algoritmo interativo para a correção do campo no meio não-linear. O formalismo de ângulo largo é obtido pela expansão da EEH para os esquemas CN e GD em termos de polinômios aproximantes de Padé de ordem (1,0) e (1,1) para CN e GD, e (2,2) e (3,3) para CN. Os aproximantes de ordem superior a (1,1) apresentam sérios problemas de estabilidade. Este problema é eliminado pela rotação dos aproximantes no plano complexo. Duas condições de contorno nos extremos da janela computacional são também investigadas: 1) (TBC - Transparent Boundary Condition) e 2) condição de contorno absorvente (TAB - Transparent Absorbing Boundary). Estas condições de contorno possuem a facilidade de evitar que reflexões indesejáveis sejam transmitidas para dentro da janela computacional. Um estudo comparativo da influência destas condições de contorno na solução de guias de ondas ópticos não-lineares é também abordada neste trabalho. / This work introduces an extension of the beam propagation method (BPM) for the analysis of optical waveguides and couplers based on Kerr-type nonlinear materials. This method is intended for the investigation of structures where the paraxial scalar Helmholtz equation (EEH) no longer holds. The numerical methods developed for this situation are known in the literature as wide-angle beam propagation methods. The formulation developed in this work is based on finite differences and on the Crank-Nicholson (CN) and Generalized Douglas (GD) schemes. These schemes are characterized by a truncation error with respect to the transverse discretization step, Δx, proporcional to O(Δx2) for the CN and to O(Δx4) for the GD scheme. The convergence of the method for both schemes is optimized by the application of an iterative algorithm for the correction of the field in the nonlinear medium. The wide-angle formalism is obtained by the expansion of the EEH for the CN and GD schemes in terms of Padé approximant polynomials. The expansions addressed in this work utilize Padé approximants of order (1,0) and (1,1) for the CN and GD scheme, and (2,2) and (3,3) for the CN scheme. Approximants orders higher than (1,1) show serious stability problems. This problem is circumvented by rotating the approximants in the complex plane. Two boundary conditions on the edge of the computational window are also investigated: 1) transparent boundary condition (TBC) and 2) transparent absorbing boundary (TAB). These boundary conditions are necessary in order to avoid unwanted reflections back to computational domain. A comparative study of the influence of these boundary conditions on the solution of nonlinear optical waveguides is also addressed in this work.
|
7 |
Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares / not availableReinaldo de Sales Flamino 21 September 2001 (has links)
Este trabalho propõe uma extensão do método de propagação de feixe (BPM - Beam Propagation Method) para a análise de guias de ondas ópticos e acopladores baseados em materiais não-lineares do tipo Kerr. Este método se destina à investigação de estruturas onde a utilização da equação escalar de Helmholtz (EEH) em seu limite paraxial não mais se aplica. Os métodos desenvolvidos para este fim são denominados na literatura como métodos de propagação de feixe de ângulo largo. O formalismo aqui desenvolvido é baseado na técnica das diferenças finitas e nos esquemas de Crank-Nicholson (CN) e Douglas generalizado (GD). Estes esquemas apresentam como característica o fato de apresentarem um erro de truncamento em relação ao passo de discretização transversal, Δx, proporcional a O(Δx2) para o primeiro e O(Δx4). A convergência do método em ambos esquemas é otimizada pela utilização de um algoritmo interativo para a correção do campo no meio não-linear. O formalismo de ângulo largo é obtido pela expansão da EEH para os esquemas CN e GD em termos de polinômios aproximantes de Padé de ordem (1,0) e (1,1) para CN e GD, e (2,2) e (3,3) para CN. Os aproximantes de ordem superior a (1,1) apresentam sérios problemas de estabilidade. Este problema é eliminado pela rotação dos aproximantes no plano complexo. Duas condições de contorno nos extremos da janela computacional são também investigadas: 1) (TBC - Transparent Boundary Condition) e 2) condição de contorno absorvente (TAB - Transparent Absorbing Boundary). Estas condições de contorno possuem a facilidade de evitar que reflexões indesejáveis sejam transmitidas para dentro da janela computacional. Um estudo comparativo da influência destas condições de contorno na solução de guias de ondas ópticos não-lineares é também abordada neste trabalho. / This work introduces an extension of the beam propagation method (BPM) for the analysis of optical waveguides and couplers based on Kerr-type nonlinear materials. This method is intended for the investigation of structures where the paraxial scalar Helmholtz equation (EEH) no longer holds. The numerical methods developed for this situation are known in the literature as wide-angle beam propagation methods. The formulation developed in this work is based on finite differences and on the Crank-Nicholson (CN) and Generalized Douglas (GD) schemes. These schemes are characterized by a truncation error with respect to the transverse discretization step, Δx, proporcional to O(Δx2) for the CN and to O(Δx4) for the GD scheme. The convergence of the method for both schemes is optimized by the application of an iterative algorithm for the correction of the field in the nonlinear medium. The wide-angle formalism is obtained by the expansion of the EEH for the CN and GD schemes in terms of Padé approximant polynomials. The expansions addressed in this work utilize Padé approximants of order (1,0) and (1,1) for the CN and GD scheme, and (2,2) and (3,3) for the CN scheme. Approximants orders higher than (1,1) show serious stability problems. This problem is circumvented by rotating the approximants in the complex plane. Two boundary conditions on the edge of the computational window are also investigated: 1) transparent boundary condition (TBC) and 2) transparent absorbing boundary (TAB). These boundary conditions are necessary in order to avoid unwanted reflections back to computational domain. A comparative study of the influence of these boundary conditions on the solution of nonlinear optical waveguides is also addressed in this work.
|
Page generated in 0.0807 seconds