Spelling suggestions: "subject:"archaean"" "subject:"archaeans""
21 |
The sulfur content and sulfur isotopic composition of Archean basaltic rocks at Matagami, Québec and their relationship to massive sulfides /Pasitschniak, Anna. January 1982 (has links)
No description available.
|
22 |
The geology and geochemistry of Archean volcanic rocks in Daniel Township, Matagami, Québec /Beaudry, Charles. January 1984 (has links)
No description available.
|
23 |
Geologic evolution of the Archean Buhwa Greenstone Belt and surrounding granite-gneiss terrane, southcentral ZimbabweFedo, Christopher M. 06 June 2008 (has links)
The Archean (~3.0 Ga) Buhwa Greenstone Belt, and surrounding granite-gneiss terrane, is the least understood major greenstone belt in the Archean Zimbabwe Craton, despite occupying a critical position between an early Archean continental nucleus and the Limpopo Belt. The cover succession in the Buhwa Greenstone Belt, which was probably deposited on the margin of this nucleus, is divisible into shelfal and basinal facies associations separated by a transitional facies association. The shelfal association consists mostly of quartzarenite and shale, but also contains a thick succession of iron-formation. Geochemical characteristics of the shales indicate that the source terrane consisted of several lithologies including tonalite, mafic-ultramafic volcanic rocks, and granite that underwent intense chemical weathering. Basinal deposits consist dominantly of greenstones, with less abundant chert and ironformation. The cover succession, which was deposited on a stable shelf transitional to deep water, has no stratigraphic equivalents elsewhere on the Archean Zimbabwe Craton. However, time and lithologic correlatives in the central zone of the Limpopo The Archean (-3.0 Ga) Buhwa Greenstone Belt, and surrounding granite-gneiss terrane, is the least understood major greenstone belt in the Archean Zimbabwe Craton, despite occupying a critical position between an early Archean continental nucleus and the Limpopo Belt. The cover succession in the Buhwa Greenstone Belt, which was probably deposited on the margin of this nucleus, is divisible into shelfal and basinal facies associations separated by a transitional facies association. The shelfal association consists mostly of quartzarenite and shale, but also contains a thick succession of iron-formation. Geochemical characteristics of the shales indicate that the source terrane consisted of several lithologies including tonalite, mafic-ultramafic volcanic rocks, and granite that underwent intense chemical weathering. Basinal deposits consist dominantly of greenstones, with less abundant chert and ironformation. The cover succession, which was deposited on a stable shelf transitional to deep water, has no stratigraphic equivalents elsewhere on the Archean Zimbabwe Craton. However, time and lithologic correlatives in the central zone of the Limpopo ~2.9 Ga in southern Africa.
At ~2.9 Ga, the northern margin of the greenstone belt experienced kilometerscale, oblique-slip dextral shearing. This shear zone and the surrounding margins of the greenstone belt were later intruded by the ~2.9 Ga Chipinda batholith, which ranges from granitic to tonalitic in composition.
A number of events occurred during the time period spanning 2.9-2.5 Ga and current geochronology cannot separate their order; some are known to be coeval. Crustal shortening to the northwest, which resulted in map-scale folding of the cover succession (and surrounding batholith) and greenschist-facies metamorphism, occurred along a set of discrete high-angle reverse-sense shear zones in response to uplift the Northern Marginal Zone of the Limpopo Belt over the Zimbabwe Craton. Two suites of potassic granites were intruded into the area near the end of reverse shearing. Analysis of a conjugate fault pair that is developed within one of the potassic granite suites, yields a principal compressive stress consistent with continued northwest-directed crustal shortening. The region was stabilized by ~2.5 Ga, with intrusion of the Great Dyke of Zimbabwe. It is possible that the last events to affect the area, which include sinistral shearing, transecting cleavage development, and northwest-striking open folding, took place during the 2.9-2.5 Ga time intervaL These structures post-date regional folding and metamorphism, but because of limited magnitude and extent, do not show obvious cross-cutting relationships with other rocks or structures. A tenable alternative is that these late structures formed at ~2.0 Ga. an age that is proving to be of great significance in the evolution of the Limpopo Belt and along parts of the southern margin of the Zimbabwe Craton. / Ph. D.
|
24 |
The anatectic history of Archaean metasedimentary granulites from the Ancient Gneiss Complex, SwazilandTaylor, Jeanne 03 1900 (has links)
Thesis (DSc)--Stellenbosch University, 2012 / ENGLISH ABSTRACT: This study is an investigation of the anatectic history of high-grade paragneisses from the Ancient
Gneiss Complex (AGC) in Swaziland. The work involved an integrated field, metamorphic,
geochemical, geochronological and structural study of metasedimentary granulites from three
separate, but spatially related areas of outcrop in south-central Swaziland, which were subjected to
multiple high-grade partial melting events throughout the Meso- to Neoarchaean. The project has
aimed to constrain the age(s) and conditions of metamorphism, so as to contribute to the
understanding of geodynamic processes in the Barberton and AGC granite-greenstone terranes, as
well as to investigate certain physical and chemical aspects of anatexis in the migmatites. The
metamorphic record retained in these rocks, constrained by phase equilibria modelling as well as
zircon and monazite SHRIMP and LA-ICP-MS geochronology, informs on the state of the mid- to
lower-crust of the southeastern Kaapvaal Craton during key events associated with early lithosphere
assembly and crustal differentiation. It also suggests that the region is comprised of more than one
high-grade terrane. Two of the areas investigated experienced high-temperature metamorphism at
ca. 3.23-3.21 Ga, in addition to a major 830-875º C, 6.5-7.6 kbar anatectic event at ca. 3.11-3.07
Ga. Intermediate and younger high-temperature events are recorded at ca. 3.18 Ga, ca. 3.16 Ga and
2.99 Ga. The timing of these metamorphic events coincided with the amalgamation of the eastern
domain of the proto-Craton via subduction and accretion of micro-continental fragments at ca. 3.23
Ga, including the Barberton Greenstone Belt (BGB) and AGC terranes, as well as discrete episodes
of crustal differentiation and potassic granitic magmatism between ca. 3.23 and 3.10 Ga. The third
area investigated holds no record of Mesoarchaean metamorphism, but instead experienced a 830-
855 ºC, 4.4-6.4 kbar partial melting episode at ca. 2.73 Ga. This broadly coincided with the
formation of a large continental flood basalt province, the ca. 2.71 Ga Ventersdorp LIP, and
widespread intracratonic granitic magmatism on the Craton towards the end of the Neoarchaean. An
explanation for the contrast in metamorphic record in the two terranes may be that the 2.71 Ga
granulites represent a much younger sedimentary succession, and that granulites from the older
terrane were left too restitic, after substantial partial melting during the Mesoarchaean, to record
subsequent high-grade events. Finally, this study documents the details of S-type granitic magma
production and extraction from a typical metapelitic source. Using the 2.73 Ga granulites from the
AGC as a natural field laboratory, a case is made for the selective entrainment of peritectic garnet to
the magma as a mechanism for generating relatively mafic, peraluminous S-type granite
compositions. The work demonstrates the evolution of entrained peritectic garnet in such magmas,
and is in strong support of a ‘peritectic phase entrainment’ process by which relatively mafic granite
magmas are produced from melts which, in theory, should be highly leucocratic. / AFRIKAANSE OPSOMMING: Hierdie studie ondersoek die anatektiese geskiedenis van hoëgraadse metasedimentêre gneise uit die
Ancient Gneiss Complex (AGC) in Swaziland. Die werk behels 'n geïntegreerde veld,
metamorfiese, geochemiese, geochronologiese en strukturele studie van metasedimentêre granuliete
van drie afsonderlike, maar ruimtelik verwante gebiede in suid-sentraal Swaziland, wat aan verskeie
hoëgraadse anatektiese gebeure onderworpe was gedurende die Meso-tot Neoargeïese tydsperiode.
Die studie is daarop gemik om die ouderdomme en die kondisies van metamorfose vas te stel, om
sodoende by te dra tot die begrip van die geodinamiese prosesse in die Barberton en AGC granietgroensteen
terrein, asook om sekere fisiese en chemiese aspekte van die anatektiese proses te
ondersoek. Die metamorfe rekord, bepaal deur mineraal ewewigsmodellering sowel as sirkoon en
monasiet SHRIMP en LA-ICP-MS geochronologie, belig die toestand van die middel-tot laer-kors
van die suidoostelike Kaapvaal Kraton tydens vroeë litosfeer samesmelting en differensiasie. Dit
stel ook voor dat die streek uit meer as een hoëgraadse terrein bestaan. Twee van die gebiede het
hoë-temperatuur metamorfose by 3.23-3.21 Ga ervaar, asook 'n hoof 830-875 ° C, 6.5-7.6 kbar
anatektiese gebeurtenis by 3.11-3.07 Ga. Intermediêre en jonger hoë-temperatuur gebeure was ook
by 3.18 Ga, 3.16 Ga en 2.99 Ga geregistreer. Die metamorfose van die gebied stem ooreen met die
samesmelting van die oos Kaapvaal Kraton domein deur subduksie en aanwas van mikro-kontinente
by 3.23 Ga, insluitend die Barberton en AGC terreine, asook diskrete episodes van kors
differensiasie en kalium-ryke graniet magmatisme tussen 3.23 en 3.10 Ga. Die derde gebied hou
geen rekord van Mesoargeïkum metamorfose nie. In plaas daarvan het dit 'n 830-855 ° C, 4.4-6.4
kbar anatektiese episode by 2.73 Ga ervaar, wat ooreenstem met die vorming van 'n groot
kontinentale vloedbasalt provinsie, die 2.71 Ga Ventersdorp Supergroep, en wydverspreide
intrakratoniese graniet magmatisme teen die einde van die Neoargeïkum. 'n Moontlike
verduideliking vir die kontras in metamorfe rekord in die twee terreine mag wees dat die 2.71 Ga
granuliete 'n jonger sedimentêre afsetting verteenwoordig, en dat granuliete van die ouer terrein te
restieties gelaat was na aansienlike anateksis in die Mesoargeïkum, om daaropvolgende hoëgraadse
gebeure te registreer. Ten slotte, hierdie studie dokumenteer die besonderhede van S-tipe graniet
magma produksie en ontginning van 'n tipiese metasedimentêre bron. Die 2.73 Ga granuliete word
gebruik as 'n natuurlike veld laboratorium om die selektiewe optel-en-meevoering van peritektiese
granaat tot die magma te ondersoek. Die werk toon die evolusie van peritektiese granate in sulke
magmas aan, en ondersteun lewering van relatiewe mafiese graniet magmas deur 'n ‘peritektiese
fase optel-en-meevoerings’ proses.
|
25 |
The formation of Earth’s early felsic continental crust by water-present eclogite meltingLaurie, Angelique 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The sodic and leucocratic Tonalite, Trondhjemite and Granodiorite (TTG) granitoid series of
rocks characterise Paleo- to Meso- Archaean felsic continental crust, yet are uncommon in the
post-Archaean rock record. Consequently, petrogenetic studies on these rocks provide
valuable insight into the creation and evolution of Earth’s early continental crust. The highpressure
(HP)-type of Archaean TTG magmas are particularly important in this regard as their
geochemistry requires that they are formed by high-pressure melting of a garnet-rich eclogitic
source. This has been interpreted as evidence for the formation of these magmas by anatexis
of the upper portions of slabs within Archaean subduction zones. In general, TTG magmas
have been assumed to arise through fluid-absent partial melting of metamafic source rocks.
Therefore, very little experimental data on fluid-present eclogite melting to produce Archaean
TTG exist, despite the fact that water drives magmatism in modern arcs. Consequently, this
study experimentally investigates the role of fluid-present partial melting of eclogite-facies
metabasaltic rock in the production of Paleo- to Meso-Archaean HP-type TTG melts.
Experiments are conducted between 1.6 GPa and 3.0 GPa and 700 ºC and 900 ºC using
natural and synthetic eclogite, and gel starting materials of low-K2O basaltic composition.
Partial melting of the natural and synthetic eclogite occurred between 850 ºC and 870 ºC at
pressures above 1.8 GPa, and the melting reaction is characterised by the breakdown of sodic
clinopyroxene, quartz and water: Qtz + Cpx1 + H2O ± Grt1 = Melt + Cpx2 ± Grt2. The
experimental melts have the compositions of sodic peraluminous trondhjemites and have
compositions that are similar to the major, trace and rare earth element composition of HPtype
Archaean TTG. This study suggests that fluid-present eclogite melting is a viable petrogenetic model for this component of Paleo- to Meso-Archaean TTG crust. The nature of
the wet low-K2O eclogite-facies metamafic rock solidus has been experimentally defined and
inflects towards higher temperatures at the position of the plagioclase-out reaction. Therefore,
the results indicate that a crystalline starting material is necessary to define this solidus to
avoid metastable melting beyond temperatures of the Pl + H2O + Qtz solidus at pressures
above plagioclase stability. Furthermore, this study uses numerical and metamorphic models
to demonstrate that for reasonable Archaean mantle wedge temperatures within a potential
Archaean subduction zone, the bulk of the water produced by metamorphic reactions within
the slabs is captured by an anatectic zone near the slab surface. Therefore, this geodynamic
model may account for HP-type Archaean TTG production and additionally provides
constraints for likely Archaean subduction. The shape of the relevant fluid-present solidus is
similar to the shape of the pressure-temperature paths followed by upper levels of the
proposed Archaean subducting slab, which makes water-fluxed slab anatexis is very
dependant on the temperature in the mantle wedge. I propose that cooling of the upper mantle
by only a small amount during the late Archaean ended fluid-present melting of the slab. This
allowed slab water to migrate into the wedge and produce intermediate composition
magmatism which has since been associated with subduction zones. / AFRIKAANSE OPSOMMING: Die reeks natruimhoudende en leukokraties Tonaliet, Trondhjemiet en Granodioriet (TTG)
felsiese stollingsgesteentes is kenmerkend in die Paleo- tot Meso-Argeïkum felsiese
kontinentale kors, maar is ongewoon in die post-Argeïese rots rekord. Gevolglik,
petrogenetiese studies op hierdie rotse verskaf waardevolle insig in die skepping en evolusie
van die aarde se vroeë kontinentale kors. Die hoë-druk (HD)-tipe van die Argeïkum TTG
magmas is veral belangrik in hierdie verband as hulle geochemie vereis dat hulle gevorm
word deur hoë druk smelting van 'n granaat-ryk eklogitiese bron. Dit word interpreteer as
bewys vir die vorming van hierdie magmas deur smelting van die boonste gedeeltes van die
blaaie in Argeïese subduksie sones. TTG magmas in die algemeen, is veronderstel om op te
staan deur middel van water-afwesig gedeeltelike smelting van metamafiese bron rotse.
Daarom bestaan baie min eksperimentele data op water-teenwoordig eklogiet smelting om
Argeïkum TTG te produseer, ten spyte van die feit dat water magmatisme dryf in moderne
boë. Gevolglik is hierdie studie ‘n eksperimentele ondersoek in die rol van water-teenwoordig
gedeeltelike smelting van eklogiet-fasies metamafiese rots in die produksie van Paleo- tot
Meso-Argeïkum HD-tipe TTG smelte. Eksperimente word uitgevoer tussen 1.6 GPa en 3.0
GPa en 700 ºC en 900 ºC met behulp van natuurlike en sintetiese eklogiet, en gel begin
materiaal van lae-K2O basaltiese samestelling. Gedeeltelike smelting van die natuurlike en
sintetiese eklogiet het plaasgevind tussen 850 ºC en 870 ºC te druk bo 1.8 GPa, en die
smeltings reaksie is gekenmerk deur die afbreek van natruimhoudende klinopirokseen, kwarts
en water: Qtz + Cpx1 + H2O ± Grt1 = Smelt + Cpx2 ± Grt2. Die eksperimentele smelte het die
komposisies van natruimhoudende trondhjemites en is soortgelyk aan die hoof-, spoor- en seldsame aard element samestelling van HD-tipe Argeïkum TTG. Hierdie studie dui daarop
dat water-teenwoordig eklogiet smelting 'n lewensvatbare petrogenetiese model is vir hierdie
komponent van Paleo- tot Meso-Argeïkum TTG kors. Die aard van die nat lae-K2O eklogietfasies
metamafiese rock solidus is eksperimenteel gedefinieër en beweeg na hoër temperature
by die posisie van die plagioklaas-out reaksie. Daarom dui die resultate daarop dat 'n
kristallyne materiaal nodig is om hierdie solidus te definieër en metastabiele smelting buite
temperature van die Pl + H2O + Qtz solidus druk bo plagioklaas stabiliteit te vermy. Verder
maak hierdie studie gebruik van numeriese en metamorfiese modelle om aan te dui dat die
grootste deel van die water geproduseer deur metamorfiese reaksies binne die blaaie bestaan
vir redelike Argeïkum mantel wig temperature binne 'n potensiële Argeïkum subduksie sone,
en word opgevang deur 'n smelting sone naby die blad oppervlak. Daarom kan hierdie
geodinamies model rekenskap gee vir HD-tipe Argeïkum TTG produksie en dit bied ook die
beperkinge vir waarskynlik Argeïese subduksie. Die vorm van die betrokke waterteenwoordig
solidus is soortgelyk aan die vorm van die druk-temperatuur paaie gevolg deur
die boonste vlakke van die voorgestelde Argeïkum subderende blad, wat water-vloeiing blad
smeltingbaie afhanklik maak van die temperatuur in die mantel wig. Ons stel voor dat
afkoeling van die boonste mantel met slegs 'n klein hoeveelheid gedurende die laat Argeïese,
die water-vloeiing smelting van die blad beëindig. Dit het toegelaat dat die blad water in die
wig migreer en intermediêre samestelling magmatisme produseer wat sedert geassosieer
word met subduksie sones.
|
26 |
Behavior of lutetium-hafnium, samarium-neodymium and rubidium-strontium isotopic systems during processes affecting continental crust.Barovich, Karin Marie. January 1991 (has links)
Combined Lu-Hf, Sm-Nd and Rb-Sr isotopic studies of continental crustal rocks were undertaken to assess the relative effects of secondary crustal processes on isotopic systematics of whole-rock systems. The processes studied include ductile deformation, and three cases of hydrothermal alteration, involving fluids of varying composition. The Rb-Sr system proved to be easily disturbed during all secondary processes, while Sm-Nd and Lu-Hf systems were, for the most part, resilient. These results show that Nd or Hf isotopic information obtained from old rocks that have undergone typical crustal deformational and alteration events can be counted on to be equally reliable. Nd and Hf isotopic analyses were performed on four suites of Early Archean felsic gneiss complexes from Greenland, Labrador, Swaziland, and Michigan to explore questions associated with Early Archean crustal growth. The Sm-Nd isotopic data yield initial ∊(Nd) values that are mostly consistent with published age data for the suites. Calculations show limited scatter may be attributed to subtle changes in the Sm/Nd ratio or Nd isotopic composition. The Hf isotopic results are more variable and complex than the Nd results. The relevance of the studies on isotopic mobility in the first part of this work is that they have demonstrated that Nd and Hf isotopes are equally resilient during a range of secondary crustal processes. Given the robustness of the Nd isotopic data from the Archean samples, however, it seems unreasonable to attribute the much wider variation in Hf isotopic data to post-Archean isotopic disturbances. Differences in initial Hf isotopic ratios from differing magma sources seem called for. Nd and Hf whole-rock analyses of a Late Archean pristine garnet-bearing granitoid complex from northern Canada point out the importance of garnet in fractionating Lu/Hf ratios, and in developing anomalous ∊(Hf) signatures in potential source regions. Calculations show that even short-lived upper mantle/lower crustal heterogeneities, products of previous partial melting events involving garnet fractionation, can develop the range of positive and negative ∊(Hf) values seen in the Early Archean samples.
|
27 |
Tectonostratigraphy, structure and metamorphism of the Archaean Ilangwe granite - greenstone belt south of Melmoth, Kwazulu-Natal.Mathe, Humphrey Lawrence Mbendeni. January 1997 (has links)
The mapped area, measuring about 400m2, is situated along the southern margin of the
Archaean Kaapvaal Craton south of Melmoth in KwaZulu-Natal and comprises greenstones
and metasediments forming a narrow, linear E-W trending and dominantly northerly
inclined belt flanked to the north and south by various granitoids and granitoid gneisses
which have been differentiated for the first time in this study. This belt is here referred to as
the ILANGWE GREENSTONE BELT.
The lIangwe Belt rocks are grouped into the Umhlathuze Subgroup (a lower metavolcanic
suite) and the Nkandla Subgroup (an upper metasedimentary suite). The former consists
of:
(a) the Sabiza Formation: a lower amphibolite association occurring along the
southern margin of the greenstone belt;
(b) the Matshansundu Formation: an eastern amphibolite-BIF association;
(c) the Olwenjini Formation: an upper or northern amphibolite-banded chert-BIF
association.
whereas the latter is sub-divided into:
(a) the Entembeni Formation: a distinctive phyllite-banded chert-BIF association
occurring in the central and the eastern parts of the belt;
(b) the Simbagwezi Formation: a phyllite-banded chert-amphibolite association
occurring in the western part of the belt, south-east of Nkandla;
(c) the Nomangci Formation: a dominantly quartzite and quartz schist formation
occurring in the western part of the belt, south-east of Nkandla.
The contacts between the six major tectonostratigraphic formations are tectonic.
In the eastern sector of the lIangwe Belt, the lowermost metasedimentary formation, the
Entembeni Formation, cuts across both the Sabiza and Matshansundu Formations (the
lower formations of the Umhlathuze Subgroup) in a major deformed angular unconformity
referred to as the Ndloziyana angular unconformity. In the central parts of the belt, the
Entembeni Formation structurally overlies the Olwenjini Formation in what seems to be a
major local unconformity (disconformity). In the western sector of the belt, the Simbagwezi
Formation occurs as a structural wedge between the lower and upper formations of the
Umhlathuze Subgroup. That is, it structurally overlies the Sabiza Formation and structurally
underlies the Olwenjini Formation. The uppermost metasedimentary unit, the Nomangci
Formation occurs as a complex series of finger-like wedges cutting and extending into the
Simbagwezi Formation and in each case showing that the Nomangci Formation structurally
underlies the Simbagwezi Formation. This structural repetition of lithological units is
suggestive of normal dip-slip duplex structures.
Palimpsest volcanic features, such as pillow structures and minor ocelli, indicate that many
of the amphibolitic rocks represent metavolcanics, possibly transformed oceanic crust. This
is also supported by limited major element geochemistry which suggests that the original
rocks were ocean tholeiites. Evidence suggests that the talc-tremolite schists and the
serpentinitic talc schists represent altered komatiites. The nature of the metasediments
(represented by banded metacherts, quartzites and banded iron formations) and their
similarity to those of the Barberton, Pietersburg and Nondweni greenstone complexes
suggests that they were formed in relatively shallow water environments.
The lIangwe magmatism is represented by different types of granitoids and granitoid
gneisses and basic-ultrabasic intrusive bodies. Based on similar geochemical and
mineralogical characteristics and on regional distribution, mutual associations and contact
relationships, these granitoids and granitoid gneisses can be divided into three broad
associations, viz:
(a) The Amazula Gneiss - Nkwa/ini Mylonitic Gneiss - Nkwalini Quartzofeldspathic
Flaser Gneiss Association: a migmatitic paragneiss and mylonitic to
flaser gneiss association of older gneisses of Nondweni age occurring in several
widely separated areas and intruded by younger granitoids.
(b) The early post-Nondweni Granitoids comprising the Nkwalinye Tonalitic
Gneiss (a distinctive grey gneiss intrusive into the greenstones and older
gneisses) and the Nsengeni Granitoid Suite (an association of three granitoid
units of batholithic proportions flanking the greenstone belt and intrusive into the
greenstones, older gneisses and Nkwalinye Tonalitic Gneiss).
(c) The late post-Nondweni Granitoids comprising the Impisi-Umgabhi Granitoid
Suite, a batholithic microcrystic to megacrystic association of five granitoid
phases/units occurring to the north and south of the greenstone belt and intrusive
into the greenstones, older gneisses and early post-Nondweni granitoids.
Limited major element geochemistry suggests that the granitoids and granitoid gneisses
are of calc-alkaline origin and are of tonalitic, granodioritic, adamellitic and granitic
composition. An igneous derivation from material located possibly at the lower crust or
upper mantle is suggested.
At least three major episodes of deformation (01, O2 and 03) have been recognized in the
greenstones. During 01, a strong penetrative S1 tectonic foliation developed parallel to the
So primary layering and bedding. This period was characterized by intense transpositional
layering, recumbent and isoclinal intrafolial folding with associated shearing,thrusting and
structural repetition of greenstone lithologies. These processes took place in an essentially
horizontal, high strain tectonic regime.
The first phase of deformation (OG1) in the migmatitic and mylonitic gneisses was also
characterized by recumbent and isoclinal intrafolial folding and is remarkably similar to the
01deformational phase in the lIangwe greenstones.
Structural features of the first phase of deformation suggest that it was dominated by
formation of fold nappes and thrusts and was accompanied by prograde M1 medium-grade
middle to upper amphibolite facies metamorphism.
During D2 deformation, the subhorizontal D1 structures were refolded by new structures with
steeply inclined axial planes. This resulted in the formation of superimposed Type 3
interference folding in the amphibolitic rocks and large-scale, E-W trending, doublyplunging
periclinal folds in the metasediments. These periclinal folds have steeply inclined
and overturned limbs and are characterized by narrow, closed elliptical outcrop patterns
well-defined by extensive banded ironstones and metacherts.
The second phase of deformation in the granitoids (DG
2) was characterized by steeply
plunging and steeply inclined small-scale tight to isoclinal similar folds. Large-scale folds
are not present in the granitoids.
Evidence suggests that the second phase of deformation was a major compressional event
which resulted in the large-scale upright, flattened flexural folds. It was accompanied by
widespread regional greenschist metamorphism and the intrusion of the early postNondweni
granitoids.
The third phase of deformation produced steeply plunging small-scale folds on the limbs
and axial planes of the pre-existing large-scale F2 folds and upright open folds in the
granitoid terrain. This episode was characterized by the emplacement of the late postNondweni
granitoids (along the D2 greenstone boundary faults) and is associated with two
significant events of prograde M3 upper greenschist facies metamorphism and retrograde
M3 lower greenschist facies metamorphism.
Post-D3 deformation is characterized by late cross-cutting faults and the emplacement of
younger basic - ultrabasic bodies. / Thesis (Ph.D.)-University of Natal, 1997.
|
28 |
The metamorphic and anatectic history of Archaean metapelitic granulites from the South Marginal Zone, Limpopo Belt, South Africa.Nicoli, Gautier 04 1900 (has links)
Thesis (DSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Anatexis is the first step in granite genesis. Partial melting in the lower crust may produce leucoratic features of unusual chemical compositions, very different from the final products
of crustal differentiation. Therefore, the links that exists between some migmatites
and crustal-derived granites can be ambiguous.
This study is an investigation of the anatectic history of a high-grade terrain: the Southern
Marginal Zone of the Limpopo Belt (SMZ), north to the Kaapvaal Craton in South
Africa. The work involved an integrated field, metamorphic, geochemical and geochronogical
study of the metasedimentary granulites from two separate quarries in the northern
zone of the Southern Marginal Zone, the Bandelierkop quarry and the Brakspruit quarry,
where Neoarchean high-grade partial melting features can be observed.
The project has aimed to address two main issues: (1) to accurately constrain the pressuretemperature
conditions and the age of the metamorphic episode in the SMZ, with implication
for the geodynamic processes near the end of the Archean, (2) to investigate
the fluid-absent partial melting reactions that control formation of K2O-poor leucosomes
and to understand the chemical relationships in the system source-leucosome-melt–S-type
granite.
The P-T-t record retained in the Bandelierkop Formation metapelites, constrained by
phase equilibria modelling as well as zircon LA-ICP-MS geochronology, gives an insight
into crustal differentiation processes in the lower crust. Rocks in both quarries indicate
high-temperature metamorphism episodes with peak conditions of 840-860 oC and 9-11
kbar at c. 2.71 Ga with formation of leucosomes (L1) during the prograde path. Minor
leucocratic features (L2) were produced during decompression to 6-7 kbar. The end of the
metamorphic event is marked by the granulites/amphibolites facies transition (< 640 oC)
at c. 2.68 Ga. The maximum deposit age for the detrital zircons in the metapelites (c.
2.73 Ga) indicates a rapid burial process ( 0.17 cm.y1). Those evidences strongly support
that the Southern Marginal Zone contains sediments deposited in an active margin
during convergence, and that the metapelites were metamorphosed and partially melted
as a consequence of continental collision along the northern margin of the Kaapvaal Craton
at c. 2.7 Ga.
The leucocratic features generated along this P-T-t path display an unusual chemistry
with low K2O and FeO+MgO content and high CaO content. The combination of field
observations, chemical mapping and geochemical analyses leads to the conclusion the major
part of the leucosomes (L1) crystallized prior to syn-peak of metamorphism concurrent
with melt extraction from the source.
This study documents the details of leucosomes formation using field observations in
the Southern Marginal Zone and numerical modelling. This work demonstrates that the
formation of K2O-poor leucosome in the metasedimentary lower crust is controlled by
the difference in volume of equilibration and heterogeneities within the migmatites. The
partial melting of the source coupled with melt loss and water diffusivity within the melt
transfer site is a potential mechanism to explain the chemical link in the sytem residuum–
melt–S-type granite. / AFRIKAANSE OPSOMMING: Anateksis is die eerste stap in granietgenese. Meganismes wat in die onderste kors aan
die werk is, is verantwoordelik vir korsdifferensiasie en bepaal die chemiese samestelling
van die graniet.
Hierdie studie het’n ondersoek behels van die anatektiese geskiedenis van ’n ho egraadse
terrein: die suidelike randstreek van die Limpopo-gordel, noord van die Kaapvaal-kraton
in Suid-Afrika. Die werk het ’n ge integreerde veld- , metamorfiese, geochemiese en
geochronologiese studie van die metasedimentêre granuliete van twee afsonderlike groewe
in die noordelike sone van die suidelike randstreek (SRS), die Bandelierkop-groef en die
Brakspruit-groef, waar Neoarge iese ho egraadse gedeeltelike smeltkenmerke waargeneem
kan word, ingesluit.
Die projek was gerig op die ondersoek van twee belangrike kwessies: (1) om die drukâtemperatuurtoestande
en die ouderdom van die metamorfiese episode in die SRS akkuraat te
beheer, met implikasie vir die geodinamiese prosesse naby die einde van die Arge ikum, en
(2) om die reaksies onder gedeeltelik gesmelte toestande wat die vorming van migmatiete
beheer, te ondersoek en die chemiese verwantskappe in die stelsel bron - leukosoom - smelt
- S-tipe graniet te begryp.
Die P-T-t-rekord wat in die Bandelierkop-formasie metapeliete behoue is, ingeperk deur
modellering van fase-ekwilibria asook sirkoon LA-ICP-MS-geochronologie, gee insig in korsdifferensiasieprosesse
in die onderste kors. Rotse in albei groewe dui op metamorfismeepisodes
teen hoë temperature met piektoestande van 840â860 oC en 9â11 kbar teen
ongeveer 2.71 Ga met vorming van leukosome (L1) gedurende die progradeerpad. Geringe
leukokratiese eienskappe (L2) het tydens dekompressie tot 6â7 kbar ontstaan. Die einde
van die metamorfiese voorval word gekenmerk deur die fasiesoorgang van granuliete /
amfiboliete (<640 oC) by ongeveer 2.68 Ga. Die maksimum afsettingsouderdom vir die
detitrale sirkone in die metapeliete (ongeveer 2.73 Ga) dui op Å snelle begrawingsproses (
0.17 cm.y1). Daardie bewyse bied sterk ondersteuning daarvoor dat die SRS sedimente
bevat wat gedurende konvergensie in Å aktiewe rand afgeset is, en dat die metapeliete
gemetamorfoseer en gedeeltelik gesmelt het as gevolg van kontinentbotsing langs die noordelike
rand van die Kaapvaal-kraton teen ongeveer 2.7 Ga.
Die leukokratiese eienskappe wat langs hierdie P-T-t-pad opgewek word, toon Å ongewone
chemiese samestelling met lae K2O en FeO+MgO-inhoud en ho e CaO-inhoud. Die
kombinasie van veldwaarnemings, chemiese kartering en geochemiese ontledings lei tot die
gevolgtrekking dat die grootste deel van die leukosome (L1) gekristalliseer het voor die
syn-piek van metamorfisme tesame met smeltekstraksie van die bron. Hierdie studie het
die besonderhede van leukosoomformasie met behulp van veldwaarnemings in die SRS
en numeriese modellering opgeteken. Hierdie werk toon aan dat korsdifferensiasie in die
metasedimentêre onderste kors deur Å ander volume van ekwilibrasie en heterogeniteite in
die migmatiete beheer word. Die gedeeltelike smelting van die bron gepaard met smeltverlies
en waterdiffusiwiteit tot in die smeltoordragterrein is ’n potensiele meganisme om die
chemiese skakel in die stelsel residuum-smelt-S-tipe graniet te verklaar.
|
29 |
Geology, geochemistry and hydrothermal alteration at the Phelps Dodge massive sulfide deposit, Matagami, QuébecKranidiotis, Prokopis. January 1985 (has links)
No description available.
|
30 |
Migmatization and volcanic petrogenesis in the La Grande greenstone belt, QuebecLiu, Mian. January 1985 (has links)
No description available.
|
Page generated in 0.045 seconds