• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 250
  • 114
  • 22
  • Tagged with
  • 362
  • 142
  • 141
  • 103
  • 81
  • 68
  • 61
  • 56
  • 48
  • 44
  • 43
  • 43
  • 36
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Étude et calcul de quelques distances en probabilités et statistique et applications : séparation asymptotique des chaînes de Markov

Garel, Bernard 28 June 1983 (has links) (PDF)
On étudie la distance de Prokhorov, la distance de Geffroy et la distance de Fortet-Mourier-Wasserstein. On résout en particulier le problème du calcul des distances. On traite quelques problèmes relatifs à l'estimation. Puis on donne une condition nécessaire et suffisante de non séparation asymptotique de deux chaines de Markov lorsque l'espace des états est de cardinal M
162

Vorticité dans le modèle de Ginzburg-Landau de la supraconductivité

Aydi, Hassen 17 December 2004 (has links) (PDF)
Prenant $\e=\frac{1}{\kappa}$ avec $\kappa>0$ est le paramètre de Ginzburg-Landau, ce mémoire de thèse porte sur l'étude asymptotique dans la limite $\e\ri 0$ des minimiseurs périodiques ainsi que des points critiques de l'énergie de Ginzburg-Landau.<br />En première partie, on prouve pour des certeins champs magnétiques appliqués $h_{ex}$ à la surface du supraconducteur de l'ordre du premier champ critique $H_{c_1}=\frac{|\log\e|}{2}$ que pour les minimiseurs périodiques de Ginzburg-Landau, le nombre des vortex par période est de l'ordre de $h_{ex}$ et leur répartition est uniforme. En outre, en prenant des champs $h_{ex}$ proches de $H_{c_1}$ de la forme $h_{ex}=H_{c_1}+f(\e)$ où $f(\e)\rightarrow +\infty$ et $f(\e)=o(|\log\e|)$, on montre que le nombre de vortex des minimiseurs périodiques par période est de l'ordre de $f(\e)$ et leur répartition est aussi uniforme.<br />Dans une deuxième partie, toujours dans le modèle périodique, on construit une suite de points critiques ayant des vortex répartis sur un nombre fini de lignes horizontales.<br />Dans une troisième partie, on construit dans le cas d'un disque une suite de points critiques telle que les vortex sont répartis sur un nombre fini de cercles concentriques de rayon strictement positif et de centre, le centre du disque. Dans le cas où il y a un seul cercle de vorticité, le rayon est bien caractérisé.<br />Finalement, dans un modèle de Ginzburg-Landau avec "pinning", on s'intéresse à l'étude du signe des degrés des vortex et on donne des résultats partiels indiquant que les degrés ne sont pas toujours positifs.
163

Modélisation multi-échelle de l'endommagement et de la rupture dans les milieux (quasi-) fragiles

Bilbie, Gabriela 13 July 2007 (has links) (PDF)
Dans la première partie de ce manuscrit, nous développons un nouveau procédé pour obtenir des modèles d'endommagement pour les solides, pour lesquels la loi d'évolution d'endommagement est déduite par homogénéisation, à partir d'une analyse microstructurale. La nouvelle approche est illustrée dans le cas des matériaux fragiles. L'outil principal est une analyse énergétique macroscopique sur une cellule de taille finie, qui mène, par homogénéisation, à une équation macroscopique d'évolution d'endommagement. Dans cette équation, la longueur des microfissures apparaît comme variable d'endommagement et la taille de la cellule de périodicité represente un paramètre de longueur interne du matériau. La dissipation, liée au frottement sur les lèvres des microfissures, est également prise en compte.<br />Dans la deuxième partie, nous étudions les comportements instables des milieux granulaires modélisés par des grains élastiques, en grandes déformations, et des microfissures inter-granulaires. On emploie une méthode d'éléments finis à deux échelles. Les frontières entre les grains sont modélisées avec des<br />lois cohésives, frottement et contact unilatéral. Nous prouvons que la décohésion entre les grains est à l'origine des macro-instabilités, indiquées par la perte d'ellipticité du problème d'équilibre. On étudie l'influence des conditions aux frontières, des paramètres de la loi cohésive et du frottement. Nous donnons des exemples de bifurcation et nous montrons que la réponse macroscopique dépend de la taille de VER.
164

Deux problemes en transport des particules chargees intervenant dans la modelisation d'un propulseur ionique

Latocha, Vladimir 04 July 2001 (has links) (PDF)
La modélisation des propulseurs ioniques de type SPT pose de nombreux <br />problèmes dans le domaine du transport des particules chargées. Nous nous <br />intéressons à deux de ces problèmes, à savoir le transport des électrons et <br />le calcul du potentiel électrique.<br /><br />Le transport des électrons résulte de l'influence conjuguée des champs <br />(électrique et magnétique) établis dans la cavité du propulseur et des <br />collisions des électrons (dans la cavité et avec la paroi limitant celle-ci). <br />Nous avons participé au développement d'un modèle SHE (Spherical Harmonics <br />Expansion) qui résulte d'une analyse asymptotique de l'équation de Boltzmann <br />munie de conditions de réflexion aux bords. Ce modèle permet d'approcher la <br />fonction de distribution en énergie des électrons en résolvant une <br />équation de diffusion dans un espace \{position, énergie\}. Plus précisément, <br />nous avons étendu une démarche existante au cas où les collisions en volume <br />(excitation, ionisation) et les collisions inélastiques à la paroi <br />(attachement et émission secondaire) sont prises en compte. Enfin, nous <br />avons écrit un code de résolution du modèle SHE, dont les résultats ont <br />été comparés avec ceux d'une méthode de Monte Carlo. <br /><br />\vspace*{1mm}<br />Dans un deuxième temps, nous avons étudié le calcul du potentiel électrique. <br />La présence du champ magnétique impose d'écrire le courant d'électrons sous <br />la forme ${\cal J}=\sigma \nabla W$<br /> où W est le potentiel électrique et le tenseur de conductivité $\sigma$<br />est fortement anisotrope compte tenu des grandeurs physiques en jeu dans <br />le SPT. Pour résoudre $\mbox{div }{\cal J}(x,y)=S(x,y)$, <br />nous avons implémenté une méthode de volumes finis <br />sur maillage cartésien permettant de résoudre ce problème elliptique <br />anisotrope, et nous avons vérifié qu'elle échouait lorsque le rapport <br />d'anisotropie devenait grand. Aussi nous avons développé une méthode de <br />paramétrisation, qui consiste à extrapoler la solution d'un problème <br />anisotrope à l'aide d'une suite de problèmes isotropes. Cette méthode a <br />donné des résultats encourageants pour de forts rapports d'anisotropie, <br />et devrait nous permettre d'atteindre des cas réels.
165

Formules de monotonie appliquées à des problèmes à frontière libre et de modélisation en biologie

Blanchet, Adrien 12 December 2005 (has links) (PDF)
Ce mémoire présente des résultats de régularité pour des problèmes d'équations aux dérivées partielles paraboliques. Dans la première partie nous nous intéressons à des problèmes à frontière libre issus du problème de<br />l'obstacle parabolique à coefficients variables. Nous montrons des résultats de régularité de la solution et de la frontière libre. Cette étude utilise des méthodes d'explosion et des formules de monotonie. La seconde partie est consacrée à l'étude d'un problème issu de la modélisation de l'agrégation en biologie : le système de<br />Keller-Segel. En utilisant une énergie libre, nous montrons l'existence d'une masse critique en deçà de laquelle les solutions existent et au delà de laquelle elles explosent en temps fini. Nous précisons leur comportement asymptotique, dans le cas où les solutions existent en temps long.
166

Sur les courbes intégrales du champ de gradient

D'Acunto, Didier 19 December 2001 (has links) (PDF)
L'objet de ce travail est l'étude des courbes intégrales du champ de gradient de fonctions définissables dans une structure o-minimale. On s'intéresse au comportement des courbes intégrales au voisinage d'une fibre atypique. <br /><br /><br /><br />Le premier chapitre rappelle certaines propriétés géométriques des<br />ensembles définissables dans une structure o-minimale.<br /><br /><br />Le deuxième chapitre s'attache à l'étude d'une famille définissable de fonctions définies sur des ouverts contenus dans un même compact. On montre grâce à la formule de Cauchy-Crofton que la longueur des courbes intégrales du champ de gradient de chaque fonction est majorée par une constante ne dépendant que de la dimension et du compact. On en déduit ensuite une borne explicite dans le cas d'un polynôme générique de degré fixé. <br /><br /><br />Le troisième chapitre est consacré aux fonctions $C^1$ définies sur<br />des ouvert non bornés. On montre que l'ensemble des valeurs ne vérifiant pas la condition de Malgrange (valeurs critiques asymptotiques) est fini et contient les valeurs atypiques qui ne sont pas valeurs critiques. <br /><br /><br />On établit dans le quatrième chapitre un théorème de plongement d'une composante connexe arbitraire d'une fibre correspondant à la valeur critique asymptotique dans une composante connexe d'une fibre typique voisine. Ce résultat, obtenu par une inégalité du type Lojasiewicz à l'infini, permet de comprendre les changements de type topologiques des fibres d'une fonction définissable au voisinage d'une valeur atypique. En dimension deux, on décrit l'ensemble des points d'une fibre typique par lesquels passe une courbe intégrale du champ de gradient qui n'atteint pas le niveau atypique. <br /><br /><br />Enfin, le dernier chapitre étudie certaines courbes intégrales<br />remarquables du champ de gradient. Une courbe réalisant le minimum de la norme du gradient sur les niveaux est une courbe intégrale du champ de gradient si et seulement si c'est une droite. Ce résultat conduit à s'interroger sur la finitude de séparatrices du champ de gradient d'une fonction polynomiale.
167

Un test d'adéquation global pour la fonction de répartition conditionnelle

FERRIGNO, Sandie 17 December 2004 (has links) (PDF)
Soient X et Y , deux variables aléatoires. De nombreuses procédures statistiques permettent d'ajuster un modèle à ces données dans le but d'expliquer Y à partir de X. La mise en place d'un tel modèle fait généralement appel à diverses hypothèses que <br />l'on doit valider pour justifier son utilisation. Dans ce travail, on propose une approche globale où toutes les hypothèses faites pour asseoir ce modèle sont testées simultanément. <br />Plus précisément, on construit un test basé sur une quantité qui permet de canaliser toute l'information liant X à Y : la fonction de répartition conditionnelle de Y sachant (X = x) définie par F(y|x)=P(Y<=y|X=x). Notre test compare la valeur prise par l'estimateur polynômial local de F(y|x) à une estimation paramétrique du modèle supposé et rejette sa <br />validité si la distance entre ces deux quantités est trop grande. Dans un premier temps, on considère le cas où la fonction de répartition supposée est entièrement spécifiée et, dans <br />ce contexte, on établit le comportement asymptotique du test. Dans la deuxième partie du travail, on généralise ce résultat au cas plus courant en pratique où le modèle supposé contient un certain nombre de paramètres inconnus. On étudie ensuite la puissance locale du test en déterminant son comportement asymptotique local sous des suites d'hypothèses contigües. Enfin, on propose un critère de choix de la fenêtre d'ajustement qui intervient lors de l'étape d'estimation polynômiale locale de la fonction de répartition conditionnelle.
168

Etude mathématique d'équations aux dérivées partielles hyperboliques modélisant les processus de régulation des cellules sanguines - Applications aux maladies hématologiques cycliques

Crauste, Fabien 21 June 2005 (has links) (PDF)
L'ensemble des événements permettant la fabrication et le renouvellement continu des cellules du sang représente une série de processus complexes, appelée hématopoïèse, ayant lieu dans la moelle osseuse. L'hématopoïèse repose sur une réserve de cellules souches, dites hématopoïétiques, possédant des capacités uniques de différenciation (capacité à générer l'ensemble des cellules du sang) et d'auto-renouvellement (capacité à générer une cellule fille identique à la cellule mère). Nous avons réalisé une étude mathématique de l'hématopoïèse à l'aide de modèles non-linéaires structurés en âge et maturité. Elle a permis de mettre en évidence l'influence des cellules souches hématopoïétiques sur la population totale de cellules du sang, ces cellules agissant activement sur la stabilité de la population. Par l'étude de modèles non structurés en maturité, réduits par intégration à un système d'équations différentielles avec retard distribué, nous avons mis en évidence l'existence de solutions oscillantes et, à travers l'étude d'une bifurcation de Hopf, de solutions périodiques, avec de très longues périodes en comparaison de la durée du cycle cellulaire. Ces oscillations sont caractéristiques de maladies du sang dites cycliques, dont la leucémie myéloïde chronique, une forme très répandue de leucémie. Notre travail représente une contribution à l'étude de cette maladie. Enfin, nous nous sommes intéressés à un modèle d'hématopoïèse prenant en compte l'action de facteurs extérieurs à la moelle osseuse qui agissent sur la différenciation des cellules souches. Nous avons établi l'existence de solutions oscillantes pouvant décrire certaines maladies hématologiques cycliques.
169

Modélisation de Films Minces

Zorgati, Hamdi 17 December 2004 (has links) (PDF)
Cette thèse est consacrée à la modélisation des films minces courbés du type martensitique, hyperélastiques et ferromagnétiques. L'épaisseur de ces films suivant la direction normale à leur surface moyenne est très petite devant les autres dimensions du film. Dans le cas des films hyperélastiques, on considère que ceux-ci sont fixés à un substrat tout en pouvant s'en décoller. La formulation du problème exclut l'interpénétration du film et du substrat. Les états d'équilibre de ces films sont dans tous les cas décrits par des problèmes de minimisation d'énergie dépendant de la déformation que subit le film ou de la magnétisation dans le cas des films ferromagnétiques. On étudie le comportement de ces énergies ainsi que celui de leurs éventuels minimiseurs, lorsque l'épaisseur du film tend vers zéro à l'aide des outils de la $\Gamma$-convergence et de développement asymptotique formel. On obtient des modèles bidimensionnels où l'énergie limite s'écrit sur une surface courbée de $\mathbb (R)^3$.
170

Sur la modélisation des plaques minces en élasticité non linéaire

Trabelsi, Karim 07 December 2004 (has links) (PDF)
Ma thèse a été consacrée à la modélisation mathématique des plaques minces en élasticité non linéaire. Plus précisément, il s'agit d'obtenir des modèles non linéaires bidimensionnels de plaques à partir de l'élasticité non linéaire tridimensionnelle en employant essentiellement deux méthodes: le développement asymptotique formel et la Gamma-convergence. Deux classes de matériaux hyperélastiques réalistes à densités d'énergie singulières sont étudiées. Pour la première classe, l'énergie tend vers l'infini lorsque le déterminant du gradient de la déformation tend vers zéro i.e. l'on ne peut comprimer un volume en un point. Pour ce type de plaques, on obtient, en employant la première méthode, un nouveau modèle membranaire non linéaire qui empêche la formation de plis et qui approche le modèle classique pour les petites déformations. On retrouve aussi le modèle inextensionnel non linéaire classique. Ensuite, on considère les matériaux incompressibles i.e. la densité d'énergie est infinie pour les déformations dont le déterminant du gradient est différent de un. On produit grâce à la deuxième méthode un modèle membranaire non linéaire. Enfin, on montre un résultat de non existence de minimiseurs pour le modèle membranaire non linéaire classique comprimé et quelques remarques générales sont faites à ce sujet.

Page generated in 0.0452 seconds