Spelling suggestions: "subject:"atomic force"" "subject:"atomic sorce""
851 |
Time-resolved imaging of the micro-mechanical behavior of elastomeric polypropyleneNeumann, Martin 28 September 2015 (has links)
Ziel dieser Arbeit ist es, eine Verbindung zwischen der Mikrostruktur teilkristalliner Polymere und derer mechanischen Eigenschaften auf der Mikro- und Nanometerskala aufzubauen. Dazu wurden Methoden der Rasterkraftmikroskopie verwendet um sowohl orts- als auch zeitaufgelöst Kristallisations-, Deformations- und Diffusionsprozesse in der Mikrostruktur von elastomerem Polypropylen (ePP) abzubilden. Die mechanischen Eigenschaften wurden simultan mit Mikrozugversuchen bestimmt. So konnte beispielsweise ein Zusammenhang zwischen abnehmender Kristall-Kristall-Distanz und einem Ansteigen des Elastizitätsmoduls während der Kristallisation nachgewiesen werden. Weiterhin war es möglich die Veränderung der nano-mechanischen Eigenschaften während der Kristallisation einzelner kristalliner Lamellen in deren direkter Umgebung mit MUSIC-mode Rasterkraftmikroskopie zu untersuchen. Laterale Querexpansion (auxetisches Verhalten) konnte bei uniaxialen Zugversuchen für die Kreuzschraffur-Struktur elastomeren Polypropylens auf der Größenskala einiger Mikrometer nachgewiesen werden. Zusätzlich wurde eine Orientierungsabhängigkeit dieses Effekts beobachtet. Außerdem wurde die Diffusion einzelner Kristalle in der Mikrostruktur von ePP beobachtet. Die Heterogenität dieser Diffusion lässt auf eine kristallin-amorph Grenzschicht um alle Kristalle schließen.
|
852 |
Interactions of FCHo2 with lipid membranesChwastek, Grzegorz 06 February 2013 (has links)
Endocytosis is one of the most fundamental mechanisms by which the cell communicates with its surrounding. Specific signals are transduced through the cell membrane by a complex interplay between proteins and lipids. Clathrin depended endocytosis is one of important signalling pathways which leads to budding of the plasmalemma and a formation of endosomes. The FCHo2 is an essential protein at the initial stage of the this process. In is a membrane binding protein containing BAR (BIN, Amphiphysin, Rvs) domain which is responsible for a membrane binding. Although numerous valuable work on BAR proteins was published recently, the mechanistic description of a BAR domain functionality is missing. In present work we applied in vitro systems in order to gain knowledge about molecular basis of the activity of the FCHo2 BAR domain. In our studies we used supported lipid bilayers (SLBs) and lipid monolayers as s model membrane system.
The experiments were carried out with a minimal number of components including the purified FCHo2 BAR domain. Using SLBs we showed that the BAR domain can bind to entirely flat bilayers. We also demonstrated that these interactions depend on the negatively charged lipid species incorporated in the membrane. We designed an assay which allows to quantify the membrane tubulation. We found out that the interaction of the FCHo2 BAR domain with the lipid membrane is concentration dependent. We showed that an area of the bilayer deformed by the protein depends on the amount of the used BAR domain.
In order to study the relation between the mobility of lipids and the activity of FCHo2 BAR domain we designed a small-volume monolayer trough. The design of this micro-chamber allows for the implementation of the light microscopy. We demonstrated that the measured lipid diffusion in the monolayer by our new approach is in agreement with literature data. We carried out fluorescence correlation spectroscopy (FCS) experiments at different density of lipids at the water-air interface.We showed that the FCHo2 BAR domain binding affinity is proportional to the mean molecular area (MMA). We additionally demonstrated that the increased protein binding is correlated with the higher lipid mobility in the monolayer.
Additionally, by curing out high-speed atomic force microscopy (hsAFM) we acquired the structural information about FCHo2 BAR domains orientation at the membrane with a high spatio-temporal resolution. Obtained data indicate the BAR domains interact witheach other by many different contact sites what results in a variety of protein orientations in a protein assemble.
|
853 |
DNA-Templated NanomaterialsBecerril-Garcia, Hector Alejandro 23 April 2007 (has links) (PDF)
Nanomaterials display interesting physical and chemical properties depending on their shape, size and composition. Self assembly is an intriguing route to producing nanomaterials with controllable compositions and morphologies. DNA has been used to guide the self assembly of materials, resulting in: (1) metal nanowires; (2) metal or semiconductor nanorods; (3) carbon nanotubes; and (4) semiconductor, metal or biological nanoparticles. My work expands the range of DNA templated nanomaterials and develops novel ways of using DNA to pattern nanostructures on surfaces. I have performed the first synthesis of silver nanorods on single stranded DNA, an attractive material for localizing DNA coupled nanostructures through hybridization. I have demonstrated an ionic surface masking protocol to reduce ~70% of non specific metal deposition (a pervasive problem) during electroless plating of DNA with silver or copper. I have designed and constructed discrete three branched DNA junctions as scaffolding for self assembling three terminal, individually gateable nanotransistors. I have labeled these DNA structures with single streptavidin molecules, as a model for the placement of semiconductor nanocrystals at the junctions. Moreover, I have shown selective silver and copper plating of branched DNA constructs, with crystallinity that depends on plating conditions. I have fabricated DNA templated nickel nanostructures on surfaces and demonstrated their reversible interaction with a histidine labeled protein, as a model system for patterning histidine tagged nanostructures on surfaces. Previous methods were limited to decorating DNA scaffolds using streptavidin-biotin interactions. Finally, I have developed DNA shadow nanolithography, which uses angled thin film deposition and anisotropic etching to transfer patterns of surface aligned DNA onto substrates as nanoscale trenches with linewidths <30 nm. Nanotrenches can be post processed with microfabrication methods to modify their properties; I have constructed metal lines and nanopores from such trenches. This dissertation summarizes the principles and methods for synthesis and characterization of DNA templated nanomaterials. These biologically templated constructs may be useful in the fabrication of self assembled chemical and electrical sensors, and as structural materials for nanofabrication and nanopatterning on surfaces.
|
854 |
Development of Chemomechanical Functionalization and Nanografting on Silicon SurfacesLee, Michael Vernon 18 July 2007 (has links) (PDF)
Progress in chemomechanical functionalization was made by investigating the binding of molecules and surface coverage on the silicon surface, demonstrating functionalization of silicon with gases by chemomechanical means, analyzing atomic force microscopy probe tip wear in atomic force microscopy (AFM) chemomechanical nanografting, combining chemomechanical functionalization and nanografting to pattern silicon with an atomic force microscope, and extending chemomechanical nanografting to silicon dioxide. Molecular mechanics of alkenes and alkynes bound to Si(001)-2x1 as a model of chemomechanically functionalized surfaces indicated that complete coverage is energetically favorable and becomes more favorable for longer chain species. Scribing a silicon surface in the presence of ethylene and acetylene demonstrated chemomechanical functionalization with gaseous reagents, which simplifies sample cleanup and adds a range of reagents to those possible for chemomechanical functionalization. Thermal desorption spectroscopy was performed on chemomechanically functionalized samples and demonstrated the similarity in binding of molecules to the scribed silicon surface and to the common Si(001)-2x1 and Si(111)-7x7 surfaces. The wearing of atomic force microscope probe tips during chemomechanical functionalization was investigated by correlating change over time and force with widths of created lines to illustrate the detrimental effect of tip wear on mechanically-driven nanopatterning methods. In order to have a starting surface more stable than hydrogen-terminated silicon, silicon reacted with 1-octene was used as a starting surface for AFM chemomechanical functionalization, producing chemomechanical nanografting. Chemomechanical nanografting was then demonstrated on silicon dioxide using silane molecules; the initial passivating layer reduced the tip friction on the surface to allow only partial nanografting of the silane molecules. These studies broadened the scope and understanding of chemomechanical functionalization and nanografting.
|
855 |
Distinct contributions of ECM proteins to basement membrane mechanical properties in DrosophilaTöpfer, Uwe, Santillán, Karla Yanín Guerra, Fischer-Friedrich, Elisabeth, Dahmann, Christian 01 March 2024 (has links)
The basement membrane is a specialized extracellular matrix (ECM) that is crucial for the development of epithelial tissues and organs. In Drosophila, the mechanical properties of the basement membrane play an important role in the proper elongation of the developing egg chamber; however, the molecular mechanisms contributing to basement membrane mechanical properties are not fully understood. Here, we systematically analyze the contributions of individual ECM components towards the molecular composition and mechanical properties of the basement membrane underlying the follicle epithelium of Drosophila egg chambers. We find that the Laminin and Collagen IV networks largely persist in the absence of the other components. Moreover, we show that Perlecan and Collagen IV, but not Laminin or Nidogen, contribute greatly towards egg chamber elongation. Similarly, Perlecan and Collagen, but not Laminin or Nidogen, contribute towards the resistance of egg chambers against osmotic stress. Finally, using atomic force microscopy we show that basement membrane stiffness mainly depends on Collagen IV. Our analysis reveals how single ECM components contribute to the mechanical properties of the basement membrane controlling tissue and organ shape.
|
856 |
Reconstruction and Control of Tip Position and Dynamic Sensing of Interaction Force for Micro-Cantilever to Enable High Speed and High Resolution Dynamic Atomic Force MicroscopyLiu, Zhen 18 May 2017 (has links)
No description available.
|
857 |
Magnetotactic Bacteria: Isolation, Imaging, and BiomineralizationOestreicher, Zachery Walter John 18 December 2012 (has links)
No description available.
|
858 |
Surface morphology of AlGaN/GaN heterostructures grown on bulk GaN by MBEHentschel, R., Gärtner, J., Wachowiak, A., Großer, A., Mikolajick, T., Schmult, S. 10 October 2022 (has links)
In this report the influence of the growth conditions on the surface morphology of AlGaN/GaN heterostructures grown on sapphire-based and bulk GaN substrates is nondestructively investigated with focus on the decoration of defects and the surface roughness. Under Ga-rich conditions specific types of dislocations are unintentionally decorated with shallow hillocks. In contrast, under Ga-lean conditions deep pits are inherently formed at these defect sites. The structural data show that the dislocation density of the substrate sets the limit for the density of dislocation-mediated surface structures after MBE overgrowth and no noticeable amount of surface defects is introduced during the MBE procedure. Moreover, the transfer of crystallographic information, e.g. the miscut of the substrate to the overgrown structure, is confirmed. The combination of our MBE overgrowth with the employed surface morphology analysis by atomic force microscopy (AFM) provides a unique possibility for a nondestructive, retrospective analysis of the original substrate defect density prior to device processing.
|
859 |
Exploring Single-molecule Heterogeneity and the Price of Cell SignalingWang, Tenglong 25 January 2022 (has links)
No description available.
|
860 |
Nanolithography on thin films using heated atomic force microscope cantileversSaxena, Shubham 01 November 2006 (has links)
Nanotechnology is expected to play a major role in many technology areas including electronics, materials, and defense. One of the most popular tools for nanoscale surface analysis is the atomic force microscope (AFM). AFM can be used for surface manipulation along with surface imaging.
The primary motivation for this research is to demonstrate AFM-based lithography on thin films using cantilevers with integrated heaters. These thermal cantilevers can control the temperature at the end of the tip, and hence they can be used for local in-situ thermal analysis. This research directly addresses applications like nanoscale electrical circuit fabrication/repair and thermal analysis of thin-films. In this study, an investigation was performed on two thin-film materials. One of them is co-polycarbonate, a variant of a polymer named polycarbonate, and the other is an energetic material called pentaerythritol tetranitrate (PETN).
Experimental methods involved in the lithography process are discussed, and the results of lithographic experiments performed on co-polycarbonate and PETN are reported. Effects of dominant parameters during lithography experiments like time, temperature, and force are investigated. Results of simulation of the interface temperature between thermal cantilever tip and thin film surface, at the beginning of the lithography process, are also reported.
|
Page generated in 0.06 seconds