• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 11
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelagem do comportamento espaço-temporal de veículo rastreado. / Modelling the space-temporal behavior of tracked vehicle.

Eduardo Jun Shinohara 08 October 2013 (has links)
No Brasil existe a perspectiva de crescimento expressivo do volume de dados a ser processado pelas prestadoras de serviços de rastreamento em decorrência do aumento natural do uso de sistemas de rastreamento e também para atender a Resolução 330 de 2009 e Deliberação 135 de 30/01/2013 do Conselho Nacional de Trânsito (CONTRAN). Este crescimento gera a necessidade da incorporação de ferramentas analíticas nos sistemas de gerenciamento do rastreamento e monitoramento de veículos e na gestão de risco, para aumentar a sua eficiência e atender o crescimento do mercado. O objetivo desta dissertação é de propor uma metodologia que permita caracterizar o comportamento de movimentação de um veículo, com a finalidade de auxiliar o processo de tomada de decisão no gerenciamento e monitoramento de veículos. A caracterização do comportamento de movimentação do veículo foi feita pela geração de um modelo analítico do comportamento de movimentação, coletando os dados pretéritos da posição espacial e temporal. Este modelo baseia-se na movimentação e considera os aspectos comportamentais espaciais e temporais de forma independente. A caracterização do comportamento gera informações para identificar o comportamento espacial e temporal do veículo monitorado para um determinado nível de confiabilidade. / In Brazil there is the prospect of growth in the volume of data to be processed by the tracking service providers due to the natural increase of the use of tracking systems and also to meet the Resolution 330 of 2009 and Resolution 135 of 01.30.2013 of the National Traffic Council (CONTRAN), due to this growth the need of incorporation of analytical tools in systems management tracking and monitoring of vehicles and risk management are created, to increase their efficiency and meet market growth. This study objective is to propose a methodology to characterize the moving vehicle behavior, in order to assist the process of decision making in management and vehicle tagging. The vehicle handling behavior will be characterized by generating an analytical model of the vehicle movement, collecting bygone data of spatial position and time. This model will consist of a motion model taking into account that the spatial and temporal aspects of behavior are taken independently. The behavior characterization generates reports able to identify the spatial and temporal behavior of the monitored vehicle for a given level of reliability.
12

Previsão de localização futura de veículos baseada em dados de AVL. / Future location prediction of vehicles based on data AVL.

Barbosa, Luciano Aparecido 04 October 2010 (has links)
O crescente desenvolvimento de aplicações utilizadas por dispositivos móveis que fazem uso das tecnologias de posicionamento via satélite e comunicação móvel, juntamente com a popularização destes dispositivos, sejam eles celulares ou GPSs (Global Positioning System) automotivos reforçam ainda mais a necessidade de representação e o entendimento a cerca das entidades móveis retratadas nestes dispositivos e incentivam estudos que forneçam um significado maior do que a simples representação posicional destas entidades. Considera-se neste trabalho, que estas entidades móveis são veículos rastreados via satélite que fornecem sua posição espacial, determinada por um par de coordenadas geográficas (latitude e longitude), coletadas em intervalos de tempo regulares para sistemas AVL (Automatic Vehicle Location) que são responsáveis pelo monitoramento do estado destes veículos. Neste trabalho, foram desenvolvidas funções para a previsão da localização e geração de padrões dos veículos monitorados por sistemas AVL. Para tanto, as paradas efetuadas pelos veículos irão definir regiões comuns de parada ocorridas durante um intervalo de tempo passado e serão consideradas como um padrão de localização, enquanto que as trajetórias serão utilizadas para definir o padrão de movimentação. Os relacionamentos topológicos que estes padrões possuem irão definir por meio de condições espaciais/direcionais e temporais quais serão as regiões de paradas consideradas como prováveis destinos, a partir de outra região de parada, considerada como origem e, permitirão a geração de matrizes com valores de frequências relativas que consideram o número de visitas que uma região recebe a partir da outra. O que possibilita extrair valores de probabilidade condicional para cada destino provável. Portanto, a metodologia proposta e as funções desenvolvidas que foram validadas em experimentos, que utilizaram dados reais de rastreamento, fornecem uma camada inicial de inteligência aos sistemas AVL, que proporciona aos controladores destes sistemas utilizarem consultas preditivas, identificarem mais facilmente anomalias de comportamento, que possam evidenciar alguma ocorrência incomum na movimentação do veículo, além de aumentar a segurança dos veículos que possuem um dispositivo de rastreamento por meio da definição de padrões inerentes ao veículo. / The increasing development of applications used by mobile devices that make use of the technologies of satellite positioning and mobile communications, along with the popularity of these devices, whether cell phones or GPS\'s (Global Positioning System) automotive further reinforce the need for representation and understanding about the mobile entities represent in these devices and encourage studies that provide a greater meaning than the simple positional representation of these entities. It is considered in this work that these entities are tracked vehicles that provide satellite spatial position, determined by a pair of coordinates (latitude and longitude), collected at regular time intervals for systems AVL (Automatic Vehicle Location) that are responsible for monitoring the state of these vehicles. In this work, functions have been developed to predict the location and pattern generation of vehicles monitored by AVL systems. Accordingly, these stops will define common regions of the stop occurred during a period of time past and will be considered as the pattern location, while the trajectories are used to define the pattern of movement of the vehicle. The topological relationships that have these patterns define conditions through spatial/directional and temporal, which are stops regions considered as probable destinations from another stop region, regarded as origin and allow the generation of matrices with values of frequencies on considering the number of visits that region receives from the other. What makes it possible to extract values of conditional probability for each likely destination. Therefore, the proposed methodology and functions developed that been validated in experiments using real data to tracking provide a initial layer of intelligence to the AVL system that gives drivers of these systems use predictive queries, more easily identify behavioral abnormalities that may show some unusual occurrence in moving the vehicle, in addition to increasing the safety of vehicles which have a tracking device by setting patterns relating to the vehicle.
13

Metodologia de geração dinâmica de padrões de viagens rodoviárias para monitoramentos inteligentes de veículos de carga em sistemas AVL. / Dynamic generation metodology of road travel patterns to vehicles intelligent monitoring in AVL systems.

Cunha, Joana Nicolini 18 September 2008 (has links)
A presente dissertação traz a questão da aderência de viagens de veículos em monitoramentos inteligentes com sistemas Automatic Vehicle Location (AVL) que operam em rotas rodoviárias. Uma viagem é considerada como uma série de \"passadas\", que correspondem ao tempo em que o veículo está em movimento, mas excluindo os tempos gastos em paradas para atividades como carregamento/descarregamento entre outras. A partir de dados históricos coletados via Global Positioning System (GPS) pelo sistema AVL, uma metodologia de filtragem e aplicações estatísticas para geração das passadas é apresentada. Além disso, são propostos métodos para geração de padrões de viagem de referência, baseados em tempos de viagem e velocidades, desvios padrões, locais de descontinuidades entre outros parâmetros. A geração desses padrões em conjunto com procedimentos operacionais permite o monitoramento eficiente do progresso de viagens de frotas de veículos, para finalidades logísticas e de segurança. O progresso de um veículo ao longo de uma rota é analisado diante dos padrões de viagem de referência obtidos a partir de suas viagens prévias, de veículos similares na mesma rota ou de viagens em rotas de mesma classe, dependendo do que for mais adequado. A geração de padrões é um processo dinâmico que gera conhecimento sobre o veículo e comportamento da rodovia ao longo do tempo. Desenho do processo de monitoramento do progresso de viagem é apresentado, no qual, a cada nova coleta de dado GPS ou a cada instante solicitado pelo usuário, a aderência é medida, eventuais descontinuidades (saídas da rota, paradas ou mudança de sentido) são identificadas e avisos são gerados. Tal aderência é definida por índice de desempenho que considera os desvios de tempo em relação a valores de referência e respectivas tolerâncias. Para experimentação da metodologia, foi realizada simulação de viagem na rodovia BR116 na ligação São Paulo - Rio de Janeiro, sobre base com cerca de 130.000 registros de dados GPS associados. Com integração em Geographic Information System (GIS) para suporte de funcionalidades, foram gerados os padrões de viagem e simulado o processo de monitoramento com sucesso. / This dissertation addresses the question of vehicle travel adherence in intelligent monitoring with Automatic Transportation Location (AVL) operating in a regional environment. A trip is considered as series of runs, corresponding to time in movement but excluding time spent on activities such as loading/unloading and others. Based on historic data collected from AVL/GPS a statistical data filtering method to generate the runs is presented. Furthermore, statistical methods are proposed to generate travel patterns based on travel time, speed, standard deviation and other parameters. The pattern generation together with operational procedures allows effective monitoring of large fleets in logistics and safety. The progress of a vehicle along a route is evaluated face to the statistical patterns of its previous successful trips or against statistical patterns of similar vehicles on the same route, whichever appropriate. The generation of patterns is a dynamic continuous process that generates knowledge on vehicle and road behavior along time. A broad outline of the travel monitoring process is presented. Whenever the requested by user, the process calculates the travel adherence, identifies abnormalities and generates alarms. That adherence is defined by a performance index, which considers the travel time deviations from the reference values and the respective tolerances. Successful experimentation was carried out on the Rio de Janeiro - São Paulo motorway, with 130.000 Global Positioning System (GPS) positional data relayed from trucks to a Geographic Information System (GIS) based monitoring system in Brazil.
14

Metodologia de geração dinâmica de padrões de viagens rodoviárias para monitoramentos inteligentes de veículos de carga em sistemas AVL. / Dynamic generation metodology of road travel patterns to vehicles intelligent monitoring in AVL systems.

Joana Nicolini Cunha 18 September 2008 (has links)
A presente dissertação traz a questão da aderência de viagens de veículos em monitoramentos inteligentes com sistemas Automatic Vehicle Location (AVL) que operam em rotas rodoviárias. Uma viagem é considerada como uma série de \"passadas\", que correspondem ao tempo em que o veículo está em movimento, mas excluindo os tempos gastos em paradas para atividades como carregamento/descarregamento entre outras. A partir de dados históricos coletados via Global Positioning System (GPS) pelo sistema AVL, uma metodologia de filtragem e aplicações estatísticas para geração das passadas é apresentada. Além disso, são propostos métodos para geração de padrões de viagem de referência, baseados em tempos de viagem e velocidades, desvios padrões, locais de descontinuidades entre outros parâmetros. A geração desses padrões em conjunto com procedimentos operacionais permite o monitoramento eficiente do progresso de viagens de frotas de veículos, para finalidades logísticas e de segurança. O progresso de um veículo ao longo de uma rota é analisado diante dos padrões de viagem de referência obtidos a partir de suas viagens prévias, de veículos similares na mesma rota ou de viagens em rotas de mesma classe, dependendo do que for mais adequado. A geração de padrões é um processo dinâmico que gera conhecimento sobre o veículo e comportamento da rodovia ao longo do tempo. Desenho do processo de monitoramento do progresso de viagem é apresentado, no qual, a cada nova coleta de dado GPS ou a cada instante solicitado pelo usuário, a aderência é medida, eventuais descontinuidades (saídas da rota, paradas ou mudança de sentido) são identificadas e avisos são gerados. Tal aderência é definida por índice de desempenho que considera os desvios de tempo em relação a valores de referência e respectivas tolerâncias. Para experimentação da metodologia, foi realizada simulação de viagem na rodovia BR116 na ligação São Paulo - Rio de Janeiro, sobre base com cerca de 130.000 registros de dados GPS associados. Com integração em Geographic Information System (GIS) para suporte de funcionalidades, foram gerados os padrões de viagem e simulado o processo de monitoramento com sucesso. / This dissertation addresses the question of vehicle travel adherence in intelligent monitoring with Automatic Transportation Location (AVL) operating in a regional environment. A trip is considered as series of runs, corresponding to time in movement but excluding time spent on activities such as loading/unloading and others. Based on historic data collected from AVL/GPS a statistical data filtering method to generate the runs is presented. Furthermore, statistical methods are proposed to generate travel patterns based on travel time, speed, standard deviation and other parameters. The pattern generation together with operational procedures allows effective monitoring of large fleets in logistics and safety. The progress of a vehicle along a route is evaluated face to the statistical patterns of its previous successful trips or against statistical patterns of similar vehicles on the same route, whichever appropriate. The generation of patterns is a dynamic continuous process that generates knowledge on vehicle and road behavior along time. A broad outline of the travel monitoring process is presented. Whenever the requested by user, the process calculates the travel adherence, identifies abnormalities and generates alarms. That adherence is defined by a performance index, which considers the travel time deviations from the reference values and the respective tolerances. Successful experimentation was carried out on the Rio de Janeiro - São Paulo motorway, with 130.000 Global Positioning System (GPS) positional data relayed from trucks to a Geographic Information System (GIS) based monitoring system in Brazil.
15

Previsão de localização futura de veículos baseada em dados de AVL. / Future location prediction of vehicles based on data AVL.

Luciano Aparecido Barbosa 04 October 2010 (has links)
O crescente desenvolvimento de aplicações utilizadas por dispositivos móveis que fazem uso das tecnologias de posicionamento via satélite e comunicação móvel, juntamente com a popularização destes dispositivos, sejam eles celulares ou GPSs (Global Positioning System) automotivos reforçam ainda mais a necessidade de representação e o entendimento a cerca das entidades móveis retratadas nestes dispositivos e incentivam estudos que forneçam um significado maior do que a simples representação posicional destas entidades. Considera-se neste trabalho, que estas entidades móveis são veículos rastreados via satélite que fornecem sua posição espacial, determinada por um par de coordenadas geográficas (latitude e longitude), coletadas em intervalos de tempo regulares para sistemas AVL (Automatic Vehicle Location) que são responsáveis pelo monitoramento do estado destes veículos. Neste trabalho, foram desenvolvidas funções para a previsão da localização e geração de padrões dos veículos monitorados por sistemas AVL. Para tanto, as paradas efetuadas pelos veículos irão definir regiões comuns de parada ocorridas durante um intervalo de tempo passado e serão consideradas como um padrão de localização, enquanto que as trajetórias serão utilizadas para definir o padrão de movimentação. Os relacionamentos topológicos que estes padrões possuem irão definir por meio de condições espaciais/direcionais e temporais quais serão as regiões de paradas consideradas como prováveis destinos, a partir de outra região de parada, considerada como origem e, permitirão a geração de matrizes com valores de frequências relativas que consideram o número de visitas que uma região recebe a partir da outra. O que possibilita extrair valores de probabilidade condicional para cada destino provável. Portanto, a metodologia proposta e as funções desenvolvidas que foram validadas em experimentos, que utilizaram dados reais de rastreamento, fornecem uma camada inicial de inteligência aos sistemas AVL, que proporciona aos controladores destes sistemas utilizarem consultas preditivas, identificarem mais facilmente anomalias de comportamento, que possam evidenciar alguma ocorrência incomum na movimentação do veículo, além de aumentar a segurança dos veículos que possuem um dispositivo de rastreamento por meio da definição de padrões inerentes ao veículo. / The increasing development of applications used by mobile devices that make use of the technologies of satellite positioning and mobile communications, along with the popularity of these devices, whether cell phones or GPS\'s (Global Positioning System) automotive further reinforce the need for representation and understanding about the mobile entities represent in these devices and encourage studies that provide a greater meaning than the simple positional representation of these entities. It is considered in this work that these entities are tracked vehicles that provide satellite spatial position, determined by a pair of coordinates (latitude and longitude), collected at regular time intervals for systems AVL (Automatic Vehicle Location) that are responsible for monitoring the state of these vehicles. In this work, functions have been developed to predict the location and pattern generation of vehicles monitored by AVL systems. Accordingly, these stops will define common regions of the stop occurred during a period of time past and will be considered as the pattern location, while the trajectories are used to define the pattern of movement of the vehicle. The topological relationships that have these patterns define conditions through spatial/directional and temporal, which are stops regions considered as probable destinations from another stop region, regarded as origin and allow the generation of matrices with values of frequencies on considering the number of visits that region receives from the other. What makes it possible to extract values of conditional probability for each likely destination. Therefore, the proposed methodology and functions developed that been validated in experiments using real data to tracking provide a initial layer of intelligence to the AVL system that gives drivers of these systems use predictive queries, more easily identify behavioral abnormalities that may show some unusual occurrence in moving the vehicle, in addition to increasing the safety of vehicles which have a tracking device by setting patterns relating to the vehicle.

Page generated in 0.1563 seconds