Spelling suggestions: "subject:"avicel"" "subject:"daicel""
1 |
Determinacao das caracteristicas de intumescimento de adjuvantesLima Neto, Severino Antonio de January 1996 (has links)
O intumescimento é um dos fatores decisivos que influenciam o comportamento de desintegração de formas farmac6uticas compactadas e, consequentemente, o perfil biofarmacêutico de substancias ativas. Entre os diversos adjuvantes empregados para promover a desagregação daquelas formas farmac6uticas nas suas partículas primarias originais, são utilizadas varias substancias, abrangidas pelo conceito de desintegrantes intumescedores. A escolha do adjuvante mais adequado nestes casos pode ser vista como uma atividade que exige o gasto considerável de tempo e de custos elevados. Além disto deve ser levada em consideração a existência de vários produtos similares no mercado. A questão da equival6ncia representa portanto um desafio importante na fase de formulação. Com o objetivo de aumentar os conhecimentos nesta área, foi desenvolvido equipamento para a avaliação dinâmica do intumescimento de pês. Inicialmente foram considerados fatores de construção do aparelho, tais como a porosidade, espessura e área do filtro de vidro sintetizado. Foram tamb6m avaliadas variações metodológicas, entre as quais a temperatura de realização do teste e o meio liquido empregado. Croscarmelose, um superdesintegrante, foi utilizada como adjuvante-modelo no teste do equipamento. A alteração do meio liquido de ensaio foi o fator que causou a maior influ6ncia sobre os resultados, embora a espessura dos filtros de vidro sintetizado tenha causado alguma alteração quer no tempo como no volume final de intumescimento. intumescimento. Já a mudança de temperatura não provocou diferenças significativas nas observações. Numa segunda fase foi investigada a influência deste desintegrante sobre as características de intumescimento de quatro celuloses microcristalinas (CMCr) isoladas ou adicionadas com um lubrificante. Para tanto elaborou-se um planejamento fatorial 4 X 2 X 2. A presença do desintegrante, como esperado, provocou aumento do volume final de intumescimento das CMCr, que apresentaram, no entanto, comportamentos diferenciados frente ao adjuvante. Já a presença do lubrificante conduziu a resultados totalmente dependentes do tipo de CMCr testada. A análise comparativa entre estes produtos demonstrou que somente num caso houve simitaridade de comportamento. / Swelling is one of the decisive factors influencing the disintegrant behavior of compacted pharmaceutical dosage forms and consequently the biopharmaceutical profile of drug substances. Among the various excipients used to promote the disintegration of such dosage forms in its originally primary particles, several substances, classified as swelling disintegrants, are employed. The choice of the most appropriate excipient in this case can be a time and cost consuming enterprise. Additionally it must be considered that the same substance can be delivered in the market by different producers. The question of equivalence represents also an important challenge in the formulation phase. In order to provide more knowledge in this area an apparatus to analyze the dynamic swelling of powder admixtures was developed. Construction factors such as filter porosity, thickness and area were considered. Methodological variants including essay temperature and liquid medium were also evaluated. Croscarmelose, a superdisintegrant, was used as model excipient to test the self built equipment. The change of the test fluid was the determinant factor on the results, although the thickness of the sintered glass filter showed some influence on both swelling volume and swelling time of this adjuvant. As a second step, the influence of this disintegrant on the swelling behavior of four microcrystalline celluloses (MCC) alone or added with a lubricant were investigated by using a 4 X 2 X 2 factorial design. The presence of the disintegrant was able to increase the swelling volume. Both final swelling volume and time were dependent of the MCC type. The lubricant showed different influences on the four tested MCC. A comparative study demonstrated that only in one case these products presented similarly swelling behavior.
|
2 |
Use of Aloe vera and Aloe marlothii materials as excipients in beads produced by extrusion-spheronization / Patience Chinyemba.Chinyemba, Patience January 2012 (has links)
Microcrystalline cellulose (MCC) is the most commonly used excipient in the manufacture of spherical particles or beads by extrusion spheronisation. However, the use of MCC in beads has its limitations such as prolonged release of drugs due to lack of disintegration. The aim of this study was to determine if Aloe vera and Aloe marlothii leaf materials can be used as excipients in the production of beads prepared by extrusion spheronisation. A 23 full factorial design was employed for optimisation and to explore the effects of the concentration of MCC, polyvinylpyrrolidone and aloe materials on the sphericity and release rate of ketoprofen. Scanning electron microscopy revealed more porous beads when aloe materials were included in the bead formulations compared to the formulation with MMC alone. The bead formulations containing aloe materials exhibited faster drug release compared to that of the formulation containing MCC alone. Dissolution data of the optimised formulations were analysed in terms of mean dissolution time (MDT) as well as fit factors (f1 and f2). The optimised bead formulations had dissolution profiles comparable to that of the formulation containing MCC alone at pH 1.2 and 4.5 (f2 values > 70), but less comparable to the reference at pH 6.8 (50 < f2< 65) due to faster drug release. Aloe vera and Aloe marlothii leaf materials can be used successfully together with MCC in the production of beads by extrusion spheronisation. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
|
3 |
Use of Aloe vera and Aloe marlothii materials as excipients in beads produced by extrusion-spheronization / Patience Chinyemba.Chinyemba, Patience January 2012 (has links)
Microcrystalline cellulose (MCC) is the most commonly used excipient in the manufacture of spherical particles or beads by extrusion spheronisation. However, the use of MCC in beads has its limitations such as prolonged release of drugs due to lack of disintegration. The aim of this study was to determine if Aloe vera and Aloe marlothii leaf materials can be used as excipients in the production of beads prepared by extrusion spheronisation. A 23 full factorial design was employed for optimisation and to explore the effects of the concentration of MCC, polyvinylpyrrolidone and aloe materials on the sphericity and release rate of ketoprofen. Scanning electron microscopy revealed more porous beads when aloe materials were included in the bead formulations compared to the formulation with MMC alone. The bead formulations containing aloe materials exhibited faster drug release compared to that of the formulation containing MCC alone. Dissolution data of the optimised formulations were analysed in terms of mean dissolution time (MDT) as well as fit factors (f1 and f2). The optimised bead formulations had dissolution profiles comparable to that of the formulation containing MCC alone at pH 1.2 and 4.5 (f2 values > 70), but less comparable to the reference at pH 6.8 (50 < f2< 65) due to faster drug release. Aloe vera and Aloe marlothii leaf materials can be used successfully together with MCC in the production of beads by extrusion spheronisation. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
|
4 |
Determinacao das caracteristicas de intumescimento de adjuvantesLima Neto, Severino Antonio de January 1996 (has links)
O intumescimento é um dos fatores decisivos que influenciam o comportamento de desintegração de formas farmac6uticas compactadas e, consequentemente, o perfil biofarmacêutico de substancias ativas. Entre os diversos adjuvantes empregados para promover a desagregação daquelas formas farmac6uticas nas suas partículas primarias originais, são utilizadas varias substancias, abrangidas pelo conceito de desintegrantes intumescedores. A escolha do adjuvante mais adequado nestes casos pode ser vista como uma atividade que exige o gasto considerável de tempo e de custos elevados. Além disto deve ser levada em consideração a existência de vários produtos similares no mercado. A questão da equival6ncia representa portanto um desafio importante na fase de formulação. Com o objetivo de aumentar os conhecimentos nesta área, foi desenvolvido equipamento para a avaliação dinâmica do intumescimento de pês. Inicialmente foram considerados fatores de construção do aparelho, tais como a porosidade, espessura e área do filtro de vidro sintetizado. Foram tamb6m avaliadas variações metodológicas, entre as quais a temperatura de realização do teste e o meio liquido empregado. Croscarmelose, um superdesintegrante, foi utilizada como adjuvante-modelo no teste do equipamento. A alteração do meio liquido de ensaio foi o fator que causou a maior influ6ncia sobre os resultados, embora a espessura dos filtros de vidro sintetizado tenha causado alguma alteração quer no tempo como no volume final de intumescimento. intumescimento. Já a mudança de temperatura não provocou diferenças significativas nas observações. Numa segunda fase foi investigada a influência deste desintegrante sobre as características de intumescimento de quatro celuloses microcristalinas (CMCr) isoladas ou adicionadas com um lubrificante. Para tanto elaborou-se um planejamento fatorial 4 X 2 X 2. A presença do desintegrante, como esperado, provocou aumento do volume final de intumescimento das CMCr, que apresentaram, no entanto, comportamentos diferenciados frente ao adjuvante. Já a presença do lubrificante conduziu a resultados totalmente dependentes do tipo de CMCr testada. A análise comparativa entre estes produtos demonstrou que somente num caso houve simitaridade de comportamento. / Swelling is one of the decisive factors influencing the disintegrant behavior of compacted pharmaceutical dosage forms and consequently the biopharmaceutical profile of drug substances. Among the various excipients used to promote the disintegration of such dosage forms in its originally primary particles, several substances, classified as swelling disintegrants, are employed. The choice of the most appropriate excipient in this case can be a time and cost consuming enterprise. Additionally it must be considered that the same substance can be delivered in the market by different producers. The question of equivalence represents also an important challenge in the formulation phase. In order to provide more knowledge in this area an apparatus to analyze the dynamic swelling of powder admixtures was developed. Construction factors such as filter porosity, thickness and area were considered. Methodological variants including essay temperature and liquid medium were also evaluated. Croscarmelose, a superdisintegrant, was used as model excipient to test the self built equipment. The change of the test fluid was the determinant factor on the results, although the thickness of the sintered glass filter showed some influence on both swelling volume and swelling time of this adjuvant. As a second step, the influence of this disintegrant on the swelling behavior of four microcrystalline celluloses (MCC) alone or added with a lubricant were investigated by using a 4 X 2 X 2 factorial design. The presence of the disintegrant was able to increase the swelling volume. Both final swelling volume and time were dependent of the MCC type. The lubricant showed different influences on the four tested MCC. A comparative study demonstrated that only in one case these products presented similarly swelling behavior.
|
5 |
Determinacao das caracteristicas de intumescimento de adjuvantesLima Neto, Severino Antonio de January 1996 (has links)
O intumescimento é um dos fatores decisivos que influenciam o comportamento de desintegração de formas farmac6uticas compactadas e, consequentemente, o perfil biofarmacêutico de substancias ativas. Entre os diversos adjuvantes empregados para promover a desagregação daquelas formas farmac6uticas nas suas partículas primarias originais, são utilizadas varias substancias, abrangidas pelo conceito de desintegrantes intumescedores. A escolha do adjuvante mais adequado nestes casos pode ser vista como uma atividade que exige o gasto considerável de tempo e de custos elevados. Além disto deve ser levada em consideração a existência de vários produtos similares no mercado. A questão da equival6ncia representa portanto um desafio importante na fase de formulação. Com o objetivo de aumentar os conhecimentos nesta área, foi desenvolvido equipamento para a avaliação dinâmica do intumescimento de pês. Inicialmente foram considerados fatores de construção do aparelho, tais como a porosidade, espessura e área do filtro de vidro sintetizado. Foram tamb6m avaliadas variações metodológicas, entre as quais a temperatura de realização do teste e o meio liquido empregado. Croscarmelose, um superdesintegrante, foi utilizada como adjuvante-modelo no teste do equipamento. A alteração do meio liquido de ensaio foi o fator que causou a maior influ6ncia sobre os resultados, embora a espessura dos filtros de vidro sintetizado tenha causado alguma alteração quer no tempo como no volume final de intumescimento. intumescimento. Já a mudança de temperatura não provocou diferenças significativas nas observações. Numa segunda fase foi investigada a influência deste desintegrante sobre as características de intumescimento de quatro celuloses microcristalinas (CMCr) isoladas ou adicionadas com um lubrificante. Para tanto elaborou-se um planejamento fatorial 4 X 2 X 2. A presença do desintegrante, como esperado, provocou aumento do volume final de intumescimento das CMCr, que apresentaram, no entanto, comportamentos diferenciados frente ao adjuvante. Já a presença do lubrificante conduziu a resultados totalmente dependentes do tipo de CMCr testada. A análise comparativa entre estes produtos demonstrou que somente num caso houve simitaridade de comportamento. / Swelling is one of the decisive factors influencing the disintegrant behavior of compacted pharmaceutical dosage forms and consequently the biopharmaceutical profile of drug substances. Among the various excipients used to promote the disintegration of such dosage forms in its originally primary particles, several substances, classified as swelling disintegrants, are employed. The choice of the most appropriate excipient in this case can be a time and cost consuming enterprise. Additionally it must be considered that the same substance can be delivered in the market by different producers. The question of equivalence represents also an important challenge in the formulation phase. In order to provide more knowledge in this area an apparatus to analyze the dynamic swelling of powder admixtures was developed. Construction factors such as filter porosity, thickness and area were considered. Methodological variants including essay temperature and liquid medium were also evaluated. Croscarmelose, a superdisintegrant, was used as model excipient to test the self built equipment. The change of the test fluid was the determinant factor on the results, although the thickness of the sintered glass filter showed some influence on both swelling volume and swelling time of this adjuvant. As a second step, the influence of this disintegrant on the swelling behavior of four microcrystalline celluloses (MCC) alone or added with a lubricant were investigated by using a 4 X 2 X 2 factorial design. The presence of the disintegrant was able to increase the swelling volume. Both final swelling volume and time were dependent of the MCC type. The lubricant showed different influences on the four tested MCC. A comparative study demonstrated that only in one case these products presented similarly swelling behavior.
|
6 |
An investigation of the production of non-coated sustained release beads by extrusion and SpheronizationPather, Sathasivan Indiran January 1995 (has links)
Doctor Pharmaceuticae - DPharm / The popularity and increasing complexity of sustained release dosage forms has resulted in increased costs to the patient. One approach to achieve cheaper, yet effective, sustained release medication is through the simplification of production processes. Matrix tablets have been used to sustain the release of numerous drugs and are cheap to prepare. Since they are single-unit dosage forms, however, they display less predictable transit through the gastrointestinal tract. Hence, they provide less reliable blood levels of the drug in comparison with multi particulate dosage forms. Of the various types of multiparticulates available, pellets are popular for oral administration. A fairly recent innovation, in pelletization technology, is extrusion and spheronization. With this technique it is possible to produce pellets with a high degree of drug loading directly and rapidly. The drug loaded beads are usually coated for a sustained release effect. If one could omit the coating step, it would avoid many problems (thus reducing the number of quality control procedures required) and save chemicals, labour and capital for the purchase of additional equipment. The primary aim of this project was to investigate the preparation of non-coated, spheronized sustained release pellets, while a secondary aim was to prepare beads that can be compressed into sustained release tablets. A tablet can accommodate a larger mass and the compaction forces involved may enhance the sustained release effect. Several techniques were used in an attempt to sustain the release of drugs of different solubilities. In one series of formulations, a novel method was used to incorporate a binder consisting of ethylcellulose in ethanol. Using this technique, the release of Theophylline was sustained for
approximately 8 hours. In other formulations, several materials were added to beads with the aim of forming sustained release matrixes. Only magnesium stearate was able to prolong the release of Acetaminophen and Theophylline for a reasonable time. In an attempt to explain why materials that were successfully used in sustained release matrix tablets were of very limited value in beads, an equation was
developed to calculate the approximate distance between the retardant particles. Calculations using this equation revealed that the retardant particles were too far apart, within each bead, to expect consolidation to occur. The discrete retardant particles do not retard drug release effectively. Eudragit?-containing beads, which sustained the release of the drug to a small extent, were successfully compressed into tablets, both on their own and in combination with non pareil seeds. In each case, the sustained release effect was improved by compaction. In the case of the products manufactured with non pareil seeds, the tablets disintegrated rapidly to release the beads, thus ensuring that the advantages of multiparticulates were maintained. Because it was realised that a large amount of the matrix material could not be incorporated within the beads if a high dose drug was formulated with Avicel? PH 101, the idea of forming the matrix outside the beads was developed. Several materials were tried in an attempt to form a sustained release external matrix. Eudragit? RSPO prolonged the dissolution of Theophylline for more than four hours. Magnesium stearate was able to sustain the release of Acetaminophen and Theophylline
appreciably. In the latter case, the dissolution, in water, of a standard adult dose of the drug was prolonged for more than 12 hours. However, the dissolution in an acidic medium was much faster. The described technique represents an advance in extrusion and spheronization technology. While beads containing Cutina? HR did not show promise as sustained release units, they compacted to form sustained release tablets of good appearance and acceptable strength. These tablets were considered to have been efficiently prepared because the constituent beads were easily manufactured and showed good flowability, and because a glidant and a lubricant were not required. The
production of sustained release Indomethacin beads with a more steady release profile than the innovator's product has also been described in other experiments. The research described in this thesis represents progress towards the widespread commercial production of effective non-coated sustained release beads and may encourage further work towards this goal.
|
7 |
Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre Treatment ProcessesOoi, Beng Guat, Rambo, Ashley L., Hurtado, Miguel A. 01 March 2011 (has links)
This study evaluates the pre-treatment of cellulose from kenaf plant to yield sugar precursors for the production of ethanol or butanol for use as biofuel additives. In order to convert the crystalline cellulosic form to the amorphous form that can undergo enzymatic hydrolysis of the glycosidic bond to yield sugars, kenaf pulp samples were subjected to two different pre-treatment processes. In the acid pre-treatment, the pulp samples were treated with 37.5% hydrochloric acid in the presence of FeCl 3 at 50 °C or 90 °C whereas in the alkaline method, the pulp samples were treated with 25% sodium hydroxide at room temperature and with 2% or 5% sodium hydroxide at 50 °C. Microwave-assisted NaOH-treatment of the cellulose was also investigated and demonstrated to be capable of producing high glucose yield without adverse environmental impact by circumventing the use of large amounts of concentrated acids i.e., 83-85% phosphoric acid employed in most digestion processes. The treated samples were digested with the cellulase enzyme from Trichoderma reesei. The amount of glucose produced was quantified using the QuantichromTMglucose bioassay for assessing the efficiency of glucose production for each of the treatment processes. The microwave-assisted alkaline pre-treatment processes conducted at 50 °C were found to be the most effective in the conversion of the crystalline cellulose to the amorphous form based on the significantly higher yields of sugar produced by enzymatic hydrolysis compared to the untreated sample.
|
Page generated in 0.0252 seconds