231 |
Stratigraphic Architecture of the Floyd (Neal) Shale in the Black Warrior Basin of Alabama and Mississippi: Implications for Regional Exploration PotentialCaton, Matthew MacGregor 09 December 2011 (has links)
The Floyd (Neal) Shale is an organic-rich black shale in the Black Warrior Basin that is being explored for its unconventional gas potential. To understand the stratigraphic architecture of the black shale facies in Mississippi, a detailed examination of well logs, conventional core, well log correlation (cross sections) and isopach maps were used to delineate and characterize the Neal Shale depositional facies. From this study it can be concluded that parasequences associated with the upper Pride Mountain Formation, Hartselle, Floyd Shale and Bangor Limestone are equivalent to resistive units in the Neal Shale in Alabama. In Mississippi, the upper Pride Mountain Formation and Hartselle are distinctly separate and the Floyd Shale and Bangor Limestone comprise all equivalent units in the Neal Shale. The Neal Shale reaches maximum thickness of 125 ft and structurally deeper areas with maximum thickness of shale are key areas to focus for future potential gas exploration.
|
232 |
Performance of a Catch Basin Filter and Leachate from Biocidal Media for Stormwater TreatmentMaclure, Ryan Scott 01 March 2009 (has links) (PDF)
The feasibility of installing biocidal beads into a catch basin filter insert for simultaneous stormwater disinfection and contaminant removal was tested. The catch basin filter insert (DrainPac®) was tested for its sediment, oil and grease, and coliform bacteria removal efficiency in conjunction with bench-scale testing of biocidal polymer beads. DrainPac® catch basin filters are composed of a metal frame, polypropylene filter fabric, and a high-density polymer support basket, and are installed below storm drains. A 12 x 41 in. DrainPac® filter (United Stormwater, Inc.) insert was set in a flume that simulated a large-scale catchment basin. Pond water was gravity fed to the flume at flow rates up to 200 gpm. The pond water contained fine sediments at concentrations ranging from 30-50 mg/L. The biocidal beads were tested in a small laboratory column for potential application to stormwater treatment. The head loss through the clean filter insert varied from 0.5 cm at 20 gpm to 9.1 cm at 200 gpm. Head loss of 21.5 cm occurred after 625 g of solids were added to the filter at 200 gpm at which point water began bypassing the filter fabric and flowing through the mesh screen. The highest flow rate that could be filtered through the loaded filter was 80 gpm. The DrainPac® filter removed total suspended solids with efficiencies ranging from 83% to 91% at flow rates of 20 to 200 gpm, with higher removal efficiencies at lower flow rates. The oil and grease removal efficiency of the DrainPac® filter ranged from 40% to 82%. The DrainPac® filter exhibited no removal of coliform bacteria under these test conditions. Biocidal brominated polystyrene beads, developed by Dr. S. D. Worley at Auburn University, were tested in a 1-cm diameter laboratory column apparatus for leaching of bromine compounds, which is important for determining if the filters will meet water quality regulations of the receiving waters. Removal efficiencies of coliform bacteria were tested in a companion study by Cal Poly graduate student Alex Bowerman. Pond water was passed through a 1-cm thick bed of beads in an up-flow direction. Leachate was analyzed for bromine, bromide, and bromoform. Leaching from both 0.3-mm and 0.8-mm biocidal beads was tested in the column apparatus. Samples collected for bromoform analysis were quenched with sodium thiosulfate, and the time before samples were quenched had a drastic effect on bromoform concentrations. Samples quenched after the collection of the total sample were assumed to be the most realistic for stormwater conditions since stormwater entering catch basins isn’t immediately discharged into its receiving waters. Effluent from a 1-cm bed of 0.3-mm beads at 0.56 mL/sec contained the following average concentrations: 0.47 mg/L bromine, 2.45 mg/L bromoform, and 0.53 mg/L bromide. The same conditions for 0.8 mm beads resulted in effluent containing the following average concentrations: 0.27 mg/L bromine, 0.06 mg/L bromoform, and 0.50 mg/L bromide. The much lower concentrations of bromine measured in the 0.8-mm bead leachate was likely due to the greater surface area of the smaller beads. The greater leaching of bromoform from the 0.3 mm beads may be partly attributed to the greater surface area of the smaller beads, but also the manufacturer of the beads reported that different production methods were used for the 0.3 mm beads. Higher bromine compound concentrations were found at lower flow rates, due to the longer contact times with the beads. Deionized (DI) water that was used to initially wet the biocidal beads before passing pond water through the column was also analyzed for bromoform. The DI flush water from the 0.3 mm beads contained 1.25 mg/L bromoform at a flow rate of 0.28 mL/sec. Bromoform concentrations in the DI flush water from the 0.8 mm beads at the same flow rate were below detection. Bromoform is expected to be formed as bromine is reduced to bromide by the presence of organics. Since there are no organics present in DI water to form such high concentrations of bromoform as those found from the 0.3-mm bead DI flush water, it appears that bromoform could have leached from the surface of the 0.3 mm beads. The longevity of the bromine treatment of the biocidal beads was tested on one set of 0.3-mm beads by simulating five use cycles, and also by testing another set of beads after dry storage. Each use cycle was simulated by pumping pond water through a 1-cm bed of 0.3 mm beads at 0.56 mL/sec for one hour and then connecting the column to an air pump to dry for 23 hours. After five simulated uses, leachate from the beads showed only a slight reduction in concentrations of bromine and bromide (21% and 4% less than fresh beads, respectively), while the concentration of bromoform was nearly 100 times less. The drastic decrease in bromoform concentration suggests that after five simulated uses, much of the bromoform was exhausted or conditions for the formation of bromoform were no longer present. For the dry storage test, 0.3 mm beads were wetted with 1-L DI water and then stored dry for 162 days. Then pond water was pumped through the column at 0.56 mL/sec and the leachate was analyzed. After dry storage for 162 days, the leachate showed no reduction in bromine concentrations compared to fresh beads, a 97% reduction in bromoform, and a 30% increase in bromide concentrations. This significant reduction in bromoform could be due to the volatilization of bromoform off the surface of the 0.3 mm beads during dry storage. The 0.3 mm beads are no longer being manufactured, and leachate from the 0.8 mm beads contained bromoform at concentrations below the potable drinking water maximum contaminant level of 80 µg/L. Under all tested conditions, bromine, bromide, and bromoform are present in the leachate from the biocidal beads, and thus their applicability for stormwater disinfection depends on the longevity of the bromine compounds in receiving waters, and on the regulations governing these compounds.
|
233 |
Climate variability and extremes in the Okavango River Basin, southern AfricaMoses, Oliver 11 September 2023 (has links) (PDF)
The Okavango River Basin (ORB) located in southern Africa is a region of highly sensitive and biodiverse ecosystems. It spans Angola, Namibia and Botswana, with the world-famous Okavango Delta located in the latter country. The ecosystems depend on the highly seasonal ORB streamflow, which is also the major source of freshwater for the rural population, most of whom depend on subsistence farming. Climate variability and extremes such as droughts, hot days and extreme rainfall events are not well understood over this region. Also, the relationship between climate and other aspects like vegetation and river discharge are not well understood. To contribute to a better understanding of this relationship, the thesis investigated relationships between rainfall, temperature, Normalized Difference Vegetation Index (NDVI) and river discharge, and their interannual variability and trends. It was found that at monthly and seasonal time scales, NDVI spatial patterns are closely related to those of rainfall than temperature. The NDVI-rainfall and NDVI-temperature relationships differ north of 18.9°S where rainfall is higher than to its south. Correlations between NDVI and rainfall show lags of 1-2-months. Large areas across the region show significant warming trends in all seasons but mainly in October-December (OND), as well as wetting mainly in the north. The warming trend may imply more evaporation and desiccation which may exacerbate extreme event impacts such as severe droughts. Interannual variability of rainfall, NDVI and temperature is pronounced with significant correlations with El Niño-Southern Oscillation (ENSO), the subtropical Indian Ocean Dipole (SIOD) and the Botswana High for rainfall and temperature, and for NDVI with ENSO. The temperature (rainfall) correlations with ENSO and the Botswana were positive (negative), with the SIOD they were negative (positive), and the NDVI-ENSO correlations were negative. On longer time scales, the wet 2006-2013 period was analysed relative to much drier 1999-2005 epoch for OND. The 2006-2013 wetter conditions appear linked to La Niña Modoki conditions, regional circulation differences and warmer sea surface temperature near Angola. Extreme rainfall events over the ORB were analysed. The analysis was performed within a larger region in western central southern Africa (WCSA), given that many rainfall events extend beyond river basin boundaries. Focus was placed on extreme rainfall events accumulated over 1-day (DP1) and 3-days (DP3), during the main rainy season, January-April (JFMA). Due to data sparsity, the Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) were used to identify these events. It was found that contributions of DP1 and DP3 events to JFMA rainfall totals are, on average, ~10% and ~17%, respectively, but in some years their contributions exceed 30%. Most of the events result from tropical-extratropical cloud bands, with tropical lows being also important. Interannual variability in extreme events is substantial and appears linked to ENSO and the Botswana High. Although ENSO influences the extreme events and rainfall totals more generally over southern Africa, by far the neutral JFMA 2017 season experienced the wettest conditions over the world-famous Okavango Delta region. Factors that contributed to these heavy rains included a deeper Angola Low, weaker mid-level Botswana High and anomalous westerly moisture fluxes from the tropical southeast Atlantic during January – early March. The second most intense rainfall event occurred on April 22nd, resulting from a cut-off low. DP1 frequencies show significant increasing trends, and similarly, rain-days and rain totals over many areas. These trends have important implications for agricultural and water management as well as wildlife conservation in the ORB. To contribute to a better understanding of drought over the ORB region, the thesis analysed various drought metrics. These include a Cumulative Drought Intensity (CDI) index, based on the product of maximum dry spell duration and maximum temperature anomaly, and the Standardised Precipitation-Evapotranspiration Index (SPEI). Strong horizontal gradients in frequencies of dry spells and hot days were found to shift south over the ORB from August to November as the tropical rain-belt shifts increasingly south of the equator, the Congo Air Boundary declines and the Botswana High strengthens and shifts south-westwards. By December, the tropical gradient in dry spell frequencies is unnoticeable while that across the Limpopo River and southern ORB region, where the Botswana High is centred, stands out. On seasonal time scales, October-November 2013-2021 is particularly hot and dry over the Okavango Delta region. The thesis provided evidence that this hot and dry epoch is related to a stronger and southward shifted Botswana High and reduced low-level moisture convergence. On interannual time scales, there were strong relationships with the Botswana High, and to lesser extent ENSO. A strong drying-warming trend was found in the early summer, linked to a significant strengthening of the Botswana High. These trends, in conjunction with the Coupled Model Intercomparison Project Phase 6 (CMIP6) projected early summer drying over southern Africa found in the literature, may impact severely on the sensitive ecosystems of the ORB, and on water availability as well as subsistence farming in the region.
|
234 |
Optimization of Coalbed Methane Completion Strategies, Selection Criteria and Production Prediction: A Case Study in China's Qinshui BasinKeim, Steven Anthony 12 October 2011 (has links)
Advanced three-dimensional reservoir modeling was used to determine the optimum strategy for coalbed methane production in China's Qinshui Basin. Multiple completion strategies were analyzed for pre-mining methane drainage on the bases of economic, environmental, and mining-safety-based factors. Effective degasification in the Qinshui Basin is crucial to enhance the health and safety of the underground mining workforce and to decrease carbon dioxide equivalent greenhouse gas emissions. Active, large-scale degasification wells in the region include hydraulically stimulated vertical fracture wells and multilaterally drilled horizontal patterns, with the latter much less common.
Reservoir modeling concludes that despite their limited implementation, horizontal coalbed methane drainage wells offer the benefits of faster reservoir depressurization, high gas production rates, and faster recovery times than traditional vertical fracture wells. Coupled with reservoir modeling results, discounted cash flow analyses show that high drilling density multilateral horizontal patterns are the most financially feasible degasification strategy in the Qinshui Basin, albeit a higher initial capital investment compared to traditional vertical fracture wells and lower drilling density horizontal patterns. Additionally, horizontal wellbore designs can be altered to account for varying permeability, enhancing the productivity of methane from reservoirs exhibiting permeability values less than 1 millidarcy. Furthermore, modeling suggests that proper orientation of select horizontal wellbore patterns is crucial to optimize recoverable reserves.
Finally, a function was derived to represent the production rates of horizontal coalbed methane wells as a function of time. Analysis of the function's validity to actual production data and simulated production data suggest that it is most applicable in gassy coal seams up to 10 feet in thickness. The production rate curve was transformed to an analytical model, representing a function of well geometry and coal permeability as applied to other geological conditions of the Qinshui Basin.
Scientific contributions associated with this research include: An in depth study of degasification associated with the Qinshui Basin's low permeability coals; The methodology for assessing environmental, safety and economic benefits of coal degasification; The relationship between lateral spacing and permeability to maintain substantial gas production rates; An improved production model to describe the entire producing period of coalbed methane wells. / Ph. D.
|
235 |
The Upper Mississippian Bluefield Formation in the Central Appalachian Basin: a Hierarchical Sequence Stratigraphic Record of a Greenhouse to Icehouse TransitionMaynard, Joel Phillip 06 January 2000 (has links)
The Upper Mississippian (Chesterian) Bluefield Formation of southeastern West Virginia and southwestern Virginia is the basal unit of the Mauch Chunk Group, a succession of predominantly siliciclastic strata sourced from actively rising tectonic highlands east of the Appalachian Basin. The Bluefield Formation conformably overlies shallow-marine carbonate units of the Greenbrier Group, and is unconformably overlain by incised fluvio-estuarine facies of the Stony Gap sandstone member (Hinton Formation). Outcrops along the Allegheny Front were investigated sedimentologically and structurally, and subjected to gamma ray analysis. Composite outcrop sections from deformed rocks of the Allegheny Front were correlated with the relatively undeformed rocks in the subsurface of the Appalachian Basin to the west using over 100 commercial oil and gas test wells.
Regional subsurface cross-sections and isopachs define a depocenter in the southeastern part of the study area. Measured outcrop sections reveal that the stratigraphic record in the depocenter consists predominantly of meter-scale, upward-shallowing parasequences, each capped by a flooding surface. These parasequences are stacked into four regionally correlatable depositional sequences. On the basin margin to the southwest and northwest, incised valleys, and fewer meter-scale parasequences characterize depositional sequences.
Stacking of parasequences into sequences reflects a hierarchy of greenhouse-type 5th order, and icehouse-type 4th order eustatic changes superimposed on differential subsidence. Due to early Alleghenian thrust loading, the depocenter experienced greater total accommodation, which prevented incision during lowstands. Instead, in the depocenter, lowstands are typified by preservation of 5th order coal-bearing parasequences. Basin-margin areas experienced less total accommodation resulting in development of 4th order lowstand incised valleys and erosive removal of parasequences. This study demonstrates that both tectonic and eustatic forcing mechanisms controlled stratigraphic evolution of the Bluefield Formation. / Master of Science
|
236 |
Drosophila pseudoobscura of the Great BasinTurner, Monte E. 01 August 1977 (has links)
Four Utah populations of Drosophila pseudoobscura from the Wasatch Mountains in Utah were sampled and characterized for third chromosome gene arrangements. The original samples in this area were taken in 1940 and 1950. At that time the populations were essentially monomorphic for the Arrowhead arrangement, with small percentages of Pikes Peak and Chiricahua also found. The current samples show these populations to contain eight third chromosome arrangements; seven previously described (AR, PP, CH, ST, TL, OL, EP) and a newly discovered endemic arrangement (American Fork, AF), with breakpoints 63E and 70D. The frequency of AR had decreased to 25% in certain areas; the highest frequency found being 63%. The observed array of arrangements is very similar to the Rocky Mountain populations of Colorado, and repeated sampling from one of the Utah localities seems to show a seasonal variation of the AR chromosome resembling that of the Colorado area. Due to the diversity and extent of the changes observed it is improbable that any one mechanism or event could account for these changes.
|
237 |
Effects of Basin Size on Streamflow in Southern OntarioJelenick, Alison D. 04 1900 (has links)
<p> Daily discharge data from five Southern Ontario river systems were statistically analysed to seek relationships between streamflow characteristics and basin size. From each river system, at least two stations were used to detennine such relationships. The physiographic characteristics of each river system were also examined and qualitatively related to the streamflow statistics. Comparisons between physiographic regions were expected to support the general nature of the results obtained for each river system.</p> <p> In Southern Ontario, drainage area is correlated with mean annual peak flows. When the flows were transformed into discharge per unit area no consistent effects of basin area on the streamflow characteristics were found. However, differences in streamflow per unit area between various sub-basins can be qualitatively explained by several physical characteristics of the drainage basins.</p> / Thesis / Bachelor of Science (BSc)
|
238 |
Impacts of Water and Sediment Control Basins (WASCoBs) on Water Quality Near Atterberry, IllinoisLambert, Sara 01 December 2023 (has links) (PDF)
The environmental impacts of agricultural non-point source pollution, due in part to the intensification of agriculture to meet the nutritional needs of a growing population, indicate a need for the further implementation of Best Management Practices (BMPs) that can mitigate soil erosion and reduce the export of sediment and nutrients to receiving waters. Water and Sediment Control Basins (WASCoBs) and cover crops are both considered effective in-field BMPs that have been utilized by landowners to reduce soil and nutrient losses from fields. While each of these BMPs has been individually researched for their impacts on soil and water quality, there is little existing research that examines the impact of WASCoBs paired with cover crops on water quality. This study compared four sub-watersheds on the same field near Atterberry, Illinois: 1) a basin drained by a WASCoB, 2) a basin drained by a WASCoB and planted with a cover crop, 3) a basin drained by an ephemeral gully and planted with a cover crop, and 4) a control basin drained by an ephemeral gully. Runoff samples were collected from these watersheds and analyzed for total phosphorus, dissolved reactive phosphorus (DRP), ammonium-nitrogen, nitrate-nitrogen, and total suspended solids (TSS). Nutrient and sediment concentrations were used along with the discharge and duration of runoff events in order to determine event loads for each watershed. The WASCoBs utilized in this study were able to trap 97.3-99.2% of total phosphorus, 84.3-94.4% of DRP, 51.4-78.6% of ammonium-nitrogen, 11.8-56.3% of nitrate-nitrogen, and 98.68-99.21% of TSS. The cover crop treatments in this study did not show a significant impact on water quality, which was likely attributed to poor establishment of the cover crop. These results suggest that early planting is critical for maximizing cover crops establishment and benefit. Reductions in nutrient and sediment loads in this study suggest that WASCoBs have the potential to reduce the discharge of nutrients and sediment to waterways, indicating that their continued implementation may help to accomplish water and soil conservation goals.
|
239 |
Vegetational changes of the Uinta Basin since settlementDastrup, Bernard Curtis 01 January 1963 (has links)
A general survey of the vegetational changes of the rangelands of the Uinta Basin was made using historical records, documents, interviews, and recent vegetational surveys. Historical vegetatienal information about the Uinta Basin is very limited, most of it pertaining to the vegetation along the streams and rivers. Escalante, in 1776, mentioned the splendid groves of cottonwoods, the fine pastures, and the abundance of game along the rivers. Ashley in 1825 and Powell in 1870 entered the Basin via the Green River. Ashley crossed the Basin following the Duchesne River and its tributary the Strawberry River. He described the groves of cottonwoods and fine pastures found along the Rivers. Powell also described an abundant growth of vegetation along the rivers. General Fremont in 1844 described the hills at the middle elevations as being clothed with ''Cedar" and valleys supporting a covering of grasses. In 1905 the Ute Indian Reservation was opened for settlement. A majority of the settlers owned livestock which were grazed on the range the year around. At the time of this settlement the ranges probably supported near climax vegetation. The sagebrush areas were probably dominated by shrubs but also sustained a rich understory of grasses and forbs. The pinyon-juniper areas supported a sparse understory of shrubs, grasses, and forbs very similar to what is found today. The winter ranges, cottonwood river flood-plain, saltgrass meadows, badlands, mat Atriplex - Hilaria and the low-altitude Artemisia communities, supported a growth of palatable shrubs and grasses. Since these ranges were greatly overgrazed, they deteriorated first and have remained in this deteriorated condition. Little information could be found covering the high altitude ranges. Only two enclosure plots could be found and these indicated only slight deterioration between 1925 and 1963. The ranges as a whole show deterioration. The sagebrush areas show the greatest deterioration with an increase of shrub type vegetation and a decrease in grasses. Part of the Ute Indian Reservation is an exception of this. The Reservation has sustained very limited grazing since 1937 and many-areas have received rehabilitation measures, primarily spraying with herbicides. Areas under the management of the federal agencies have also received rehabilitation measures. The Forest Service has treated many areas and have greatly improved parts of the ranges, especially the mid-sagebrush community. The Bureau ot Land Management has also treated areas which has greatly improved range conditions, but the amount of range land treated compared to the amount of rangelend in the basin is so small that the ranges, except part of the mid-sagebrush range, are in a deteriorated condition. This is especially true of the winter ranges.
|
240 |
Ediacaran-Cambrian Stratigraphy and Paleontology of Western Nevada and Eastern CaliforniaAhn, Soo Yeun 03 September 2010 (has links)
No description available.
|
Page generated in 0.0354 seconds