• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 124
  • 37
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 406
  • 165
  • 129
  • 69
  • 51
  • 45
  • 42
  • 38
  • 35
  • 34
  • 32
  • 31
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Dynamic mechanical properties of epoxy resin/epoxidized rubber blends

Bussi, Philippe Jacques January 1993 (has links)
No description available.
102

Ductility and fracture mechanisms of particulate filled thermoplastics

Li, Jian Xing January 1993 (has links)
No description available.
103

Structure Property Relationships in Polymer Blends and Composites. Part I - Polymer/POSS Composites Part II - Poly(ethylene terepthalate) ionomer/Polyamide 6 Blends Part III - Elastomer/Boron Nitride Composites

Iyer, Subramanian 06 July 2006 (has links)
No description available.
104

PH SENSITIVE RNA AND DRUG DELIVERY SYSTEMS

Sutton, Damon Michael 08 June 2007 (has links)
No description available.
105

POLYMER BLENDS, COMPOSITES AND AEROGEL MODIFICATION BY INNOVATIVE APPROACHES

Johnson, Jack Royce, III January 2011 (has links)
No description available.
106

Diseño de blends de combustibles basado en propiedades termodinámicas

González Prieto, Mariana 27 March 2018 (has links)
La valorización de la biomasa es un área en permanente evolución, relevante de investiga-ción y que continuará atrayendo el interés del sector industrial a medida que más y más consumidores estén preocupados por el impacto ambiental del uso de recursos fósiles no renovables. Señal de ello son las grandes inversiones realizadas por la industria química tradicional (BASF, DUPONT, Braskem, Mitsubishi, entre otras) en nuevas vías de síntesis de químicos y materiales, a partir de recursos renovables. Además, existen beneficios eco-nómicos significativos si en futuros desarrollos tecnológicos se procesa biomasa residual. El notable potencial de la biomasa, como fuente alternativa de productos químicos, com-bustibles y materiales demanda nuevas tecnologías para procesar eficientemente materias primas complejas y diversas. Por su parte, impulsar el desarrollo de biorrefinerías eficien-tes obliga a integrar el diseño de nuevos procesos con el diseño de productos innovadores que faciliten la inserción de estos en el mercado. En este contexto, es importante el desa-rrollo de modelos termodinámicos predictivos y de algoritmos de simulación de propieda-des de mezclas robustos, tanto en el ámbito productivo (diseño y simulación de biorrefi-nerías) como en el de blends de combustibles, que permitan predecir el desempeño de biocombustibles al ser utilizados, por ejemplo, como aditivos de combustibles convencio-nales. Esta tesis realiza dos contribuciones principales: 1) modelado del equilibrio de fases de sistemas involucrados en la conversión de biomasa, dirigida a la síntesis de biocombusti-bles y 2) desarrollo de herramientas para el diseño de productos multicomponentes que, en particular, se aplican al diseño de mezclas de combustibles y biocombustibles. El Capítulo 1 brinda una visión general sobre las tendencias actuales en biorrefinerías y biocombustibles. Se presentan los compuestos que constituyen la plataforma de biobasa-das y sus principales rutas de conversión a biocombustibles. En esta tesis se amplía el alcance de la Ecuación de Estado a Contribución Grupal con Asociación (GCA-EoS). Este mo-delo ha sido aplicado con éxito a la descripción del comportamiento de fases de mezclas que involucran biocombustibles de primera generación (etanol y biodiesel) y numerosos productos naturales. En el Capítulo 2, luego de describir el modelo termodinámico GCA-EoS, su base teórica y tabla de parámetros, se discuten las principales estrategias de pa-rametrización desarrolladas durante este trabajo de tesis. El Capítulo 3 presenta el mode-lado del equilibrio entre fases de mezclas de CO2 con las series homólogas de n-alcanos y n-alcoholes. Estos sistemas son de particular interés para el desarrollo de tecnologías in-tensificadas por presión que están siendo altamente aplicadas en la síntesis de compues-tos biobasados y donde el CO2 es el solvente por excelencia. El Capítulo 4 desarrolla el tra-bajo realizado en torno a extender la tabla de parámetros de la GCA-EoS a nuevos biocom-bustibles furánicos. Por último, el Capítulos 5 está dedicado al modelado termodinámico de éteres con alcanos y alcoholes. Esta extensión se aplica a la predicción del equilibrio de fases de sistemas constituidos por compuestos polifuncionales como poliéteres y glicol éteres. En la segunda parte de la tesis, la GCA-EoS se aplica a la simulación de propiedades de blends y se integra a una herramienta de diseño de productos multicomponentes basado en propiedades termodinámicas. En el Capítulo 6 se presentan los algoritmos desarrolla-dos para simular matemáticamente ensayos experimentales que determinan las principa-les propiedades reguladas por normas nacionales e internacionales. Finalmente, el Capítu-lo 7 presenta el algoritmo de optimización, basado en técnicas metaheurísticas, que permi-te encontrar mezclas sustitutas que cumplan con un conjunto de propiedades especifica-das para el combustible (presión de vapor Reid, curva de destilación y perfil de composi-ción PIANOX). El diseño de blends es una aplicación de interés particular para esta tesis; sin embargo, está claro que la herramienta desarrollada puede ser extendida y aplicada al diseño de productos multicomponentes en una diversidad de aplicaciones. / Currently, biomass valorization is a research field of growing interest and has gain special attention in the industrial sector as more and more consumers are concerned about the environmental impact of using non-renewable fossil resources. Sign of it are the large in-vestments done by the traditional chemical industry (BASF, DUPONT, Braskem, Mitsubishi) in new synthesis routes of chemicals and materials from renewable resources. Moreover, significant economic benefits can be achieved if future technological develop-ments process residual biomass. Biomass potential as an alternative source of chemical, fuels and materials require new technologies capable of efficiently process complex and inhomogeneous raw materials. On the other hand, boosting the development of efficient biorefineries requires integrating the design of new processes with the design of innova-tive products that facilitate the insertion of these in the market. In this context predictive thermodynamic models and robust property simulation algorithms are required for both, process and product conceptual design and optimization. This thesis makes two main contributions for the development of: 1) a thermodynamic model for biorefineries, with focus on biofuel synthesis and 2) a tool for multicomponent product design, specifically applied to fuel/biofuel blends design. Chapter 1 provides an overview about current trends in biorefineries and biofuels. It also introduces the main platform chemicals obtained from biomass processing and their fur-ther conversion routes towards biofuels. In this thesis the scope of application of the Group Contribution with Association Equation of State (GCA-EoS) is extended in the biore-fineries context and to include new biofuels. This thermodynamic model has been success-fully applied to mixtures involving first generation biofuels (bioethanol and biodiesel) and several natural products. Chapter 2 describes the GCA-EoS model, its theoretical bases and discusses the parametrization strategies developed during this research work. Chapter 3 reviews the modeling of CO2 phase behavior with the n-alkane and n-alcohol homologous series. These systems are of interest for developing pressure intensified technologies highly applied in the synthesis of platform chemicals. Chapter 4 is focus on extending GCA-EoS table of parameters to new furanic biofuels. Finally, Chapter 5 introduces the thermo-dynamic modeling of ethers with alkanes and alcohols, extension of the GCA-EoS that al-lows predicting the phase behavior of systems including polyfunctional compounds such as polyether and glycol ethers, also considered next generation biofuels. In the second part of this thesis, the GCA-EoS is applied to the simulation of fuel blend properties and the development of a tool for designing blends based on thermodynamic properties. The developed algorithms for modeling experimental tests methods, regulated by national and international standards, are presented in Chapter 6. Finally, Chapter 7 presents an optimization algorithm based on metaheuristics techniques that allows searching for surrogate mixtures that fulfill specified fuel properties (Reid vapor pressure, distillation curve and PIANOX composition). Beyond blend design, the tools developed in this thesis could be extended and applied to other multicomponent product design.
107

Enhanced dielectric properties of immiscible poly (vinylidene fluoride)/low density polyethylene blends by inducing multilayered and orientated structures

Lin, X., Fan, L., Ren, D., Jiao, Z., Yang, W., Coates, Philip D. 03 February 2017 (has links)
Yes / In order to improve the frequency-dependent dielectric properties of the immiscible polymeric blends which were melt-compounded by composing poly (vinylidene fluoride) (PVDF) and low density polyethylene (LDPE), the layer multiplication and the solid phase orientation technologies were respectively adopted as two effective strategies to optimize the dispersion state and the orientation of internal microstructure, aiming at reducing physical porosity and improving the barrier performance as well as crystal phase of the polymer extrudates. Results comparison showed the dielectric properties were greatly dependent on the crystal type and the physical porosity density which were also emphasized as the interfacial effect in the previous work [ref. 29: Lin X et al, J Appl Polym Sci 2015; 132(36), 42507]. It was found that the multilayer-structure manipulation could substantially improve the dispersion state between the two immiscible components, enhance the mechanical performance and reduce the internal defects and increase the dielectric constant while keeping the dielectric loss stable. By uniaxial stretching the sample sheets at a rubber state temperature of ca. 10-20˚C below the melting point, crystal transformation was induced by increasing molecular chains orientation degree which was also contributed to the enhancement of the dielectric properties. These techniques implied the potential as a promising way for inducing functional structures of polymeric blends.
108

Interfacial Characterization of Polyhedral Oligomeric Silsesquioxane (POSS) Amphiphiles and Polymer Blends: Thermodynamics, Morphology, and Rheology

Deng, Jianjun 25 April 2005 (has links)
Over the past two decades one class of oligomers, polyhedral oligomeric silsesquioxanes (POSS), has attracted considerable attention because of their unique hybrid organic/inorganic molecular structures and nanoscopic sizes. While surface and interfacial properties may play a key role in many potential POSS applications, relatively little is actually known about the surface properties of POSS. This dissertation provides studies of the interfacial aspects of both POSS molecules and POSS/polymer blends at the air/water interface (A/W) through surface pressure-area per molecule (π-<i>A</i>) isotherm, Brewster angle microscopy (BAM), and interfacial stress rheometry (ISR) studies. Results for POSS Langmuir thin films at A/W show that trisilanol-POSS derivatives are a new class of amphiphiles, that exhibit multiple phase transitions in going from traditional 2D Langmuir monolayers (1 POSS molecule thick) to various 3D multilayer films upon compression. With small length/diameter ratios and bulky shapes, the monolayer phase behavior and packing states of different POSS are simpler than the traditional rod-like lipids. Meanwhile trisilanol-POSS derivatives have very different collapse behavior and multilayer organization showing strong substituent effects even though they have similar molecular sizes. While trisilanolisobutyl-POSS (TiBuP) monolayers undergo collapse around π ≈ 18 mNm⁻¹ and form various ordered or disordered solid-like 3D aggregates at different compression rates, trisilanolcyclohexyl-POSS (TCyP) monolayers collapse into trilayers via instantaneous nucleation with hemispherical edge growth around π ≈ 3.7 mNm⁻¹. ISR results reveal three different non-Newtonian flow regimes that correlate with phase transitions in the Pi-A isotherms. Further symmetric compression after trilayer formation induces TCyP thin films to self-assemble into highly ordered crystalline-like hydrophobic multilayers (≈8 POSS molecule thick) with unique rod-like morphologies, which are dramatically different from –collapsed– morphologies seen in other systems. By treating POSS derivatives as ideal nanofiller for studying confinement effects on filled polymer systems, amphiphilic poly(dimethylsiloxane) (PDMS) derivatives with different polar functional groups are studied as blends with TiBuP and octaisobutyl-POSS at A/W to resolve one of the key challenges for current nanocomposite applications: How to control nanofiller dispersion in polymer matrices? The results in this dissertation reveal that introducing polar groups into polymeric matrix polymers is a good way to control dispersion. / Ph. D.
109

Additive Manufacturing of Commercial Polypropylene Grades of Similar Molecular Weight and Molecular Weight Distribution

Nour, Mohamed Imad Eldin 12 June 2024 (has links)
Filament-based material extrusion additive manufacturing (MEAM) is an established technique in additive manufacturing (AM). However, semicrystalline polymers, such as polypropylene (PP), have limited commercial use in MEAM processes in the past due to their rapid crystallization kinetics and the subsequent effect on the integrity of the generated structures. The rapid crystallization of PP can be controlled by formulating blends of PP with hydrocarbon resins to enable longer re-entanglement times for interlayer adhesion. While the topic of formulating PP blends/composites with other materials to improve the printability has been investigated, variation in properties of commercial PP grades, of similar molecular weight (MW) and molecular weight distribution (MWD), on printability is still to be investigated. Those commercial PP grades can have wide variation in properties such as Melt Flow Index (MFI), additive content, and polymer architecture which can impact material properties relevant to printability. To investigate the effect of properties of commercial PP on their printability and mechanical performance, different commercial PP grades, with different properties, are blended with a fixed loading of hydrogenated resins, and the consequent effects on the mechanical properties of MEAM generated PP structures are studied via mechanical analysis. Tensile strength and the extent of interlayer adhesion in the 3D printed blends are characterized through rheological measurements. These measurements emphasize the importance of the relative location of the storage/loss modulus crossover point via small oscillatory frequency sweeps. We specifically show that a relatively higher crossover frequency will correlate with improved interlayer adhesion and reduced warpage in printed structures. However, this improvement is accompanied by a tradeoff, resulting in inferior tensile strength and an increased degree of print orientation anisotropy. / Master of Science / Additive Manufacturing (AM), commonly known as 3D printing, is a transformative technology with high potential to revolutionize the manufacturing landscape. Polymers are widely used in AM for various applications. As a result, extensive research is conducted to enhance the printability and properties of printed polymer structures. Polypropylene (PP) exhibits desirable mechanical, optical, and chemical properties that make its use in AM attractive. Despite this potential, optimizing the use of PP in 3D printing remains challenging. Consequently, extensive research is underway to improve the printability of PP. However, the effects of including additives to enhance the properties of commercial PP grades are often overlooked. We demonstrate that the choice of commercial PP grade is crucial to the mechanical and structural properties of structures generated via AM. This was established by developing a systematic experimental procedure to assess the printability of various PP grades and to measure their key mechanical and structural properties.
110

Epitaxial growth and morphological characteristics of isotactic polypropylene/polyethylene blends: Scale effect and mold temperature

Deng, D., Whiteside, Benjamin R., Wang, F., Norris, Keith, Zhang, Z. 28 January 2014 (has links)
No / This study investigates the influence of length scale effects (micro- and macro-injection molded parts) and mold temperature on the epitaxial growth and morphological characteristics in injection-molded bars of isotactic polypropylene (iPP)/high-density polyethylene (HDPE) blends. After preparing the blends with an iPP content of 70 wt% via melt extrusion, the injection-molded bars were formed using both micro and conventional injection molding. Samples were subsequently prepared from the moulded components to allow investigation of the internal morphology using wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and polarized light microscopy (PLM). The results indicated that the matching of micro scale and appropriate mold temperature was most favorable for epitaxial crystallization. The micro-parts had a large fraction of shear layer compared with macro-parts. The SEM observations showed that the shear layer of the former consisted of a highly oriented shish-kebab structure. Moreover, the effects of different methods of injection molding on the morphological characteristics of the micro-parts and macro-parts in different layers were elucidated in detail using PLM and SEM.

Page generated in 0.0293 seconds