Spelling suggestions: "subject:"backlund transformation"" "subject:"acklund transformation""
1 |
Wronskian, Grammian and Pfaffian Solutions to Nonlinear Partial Differential EquationsAbdeljabbar, Alrazi 01 January 2012 (has links)
It is significantly important to search for exact soliton solutions to nonlinear partial differential equations (PDEs) of mathematical physics. Transforming nonlinear PDEs into bilinear forms using the Hirota differential operators enables us to apply the Wronskian and Pfaffian techniques to search for exact solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation with not only constant coefficients but also variable coefficients under a certain constraint
(ut + α 1(t)uxxy + 3α 2(t)uxuy)x +α 3 (t)uty -α 4(t)uzz + α 5(t)(ux + α 3(t)uy) = 0.
However, bilinear equations are the nearest neighbors to linear equations, and expected to have some properties similar to those of linear equations. We have explored a key feature of the linear superposition principle, which linear differential equations have, for Hirota bilinear equations, while intending to construct a particular sub-class of N-soliton solutions formed by linear combinations
of exponential traveling waves. Applications are given for the (3+1) dimensional KP, Jimbo-Miwa (JM) and BKP equations, thereby presenting their particular N-wave solutions. An opposite question
is also raised and discussed about generating Hirota bilinear equations possessing the indicated N-wave solutions, and two illustrative examples are presented.
Using the Pfaffianization procedure, we have extended the generalized KP equation to a generalized KP system of nonlinear PDEs. Wronskian-type Pfaffian and Gramm-type Pfaffian solutions of the resulting Pfaffianized system have been presented. Our results and computations basically depend on Pfaffian identities given by Hirota and Ohta. The Pl̈ucker relation and the Jaccobi identity for determinants have also been employed.
A (3+1)-dimensional JM equation has been considered as another important example in soliton theory,
uyt - uxxxy - 3(uxuy)x + 3uxz = 0.
Three kinds of exact soliton solutions have been given: Wronskian, Grammian and Pfaffian solutions. The Pfaffianization procedure has been used to extend this equation as well.
Within Wronskian and Pfaffian formulations, soliton solutions and rational solutions are usually expressed as some kind of logarithmic derivatives of Wronskian and Pfaffian type determinants and the determinants involved are made of functions satisfying linear systems of differential equations. This connection between nonlinear problems and linear ones utilizes linear theories in solving soliton equations.
B̈acklund transformations are another powerful approach to exact solutions of nonlinear equations. We have computed different classes of solutions for a (3+1)-dimensional generalized KP equation based on a bilinear B̈acklund transformation consisting of six bilinear equations and containing nine free parameters.
A variable coefficient Boussinesq (vcB) model in the long gravity water waves is one of the
examples that we are investigating,
ut + α 1 (t)uxy + α 2(t)(uw)x + α 3(t)vx = 0;
vt + β1(t)(wvx + 2vuy + uvy) + β2(t)(uxwy - (uy)2) + β3(t)vxy + β4(t)uxyy = 0,
where wx = uy. Double Wronskian type solutions have been constructed for this (2+1)-dimensional vcB model.
|
2 |
Διακριτοποίηση ολοκληρώσιμων μερικών διαφορικών εξισώσεων : η περίπτωση της εξίσωσης των Korteweg και de VriesΣκλαβενίτη, Σπυριδούλα 26 May 2015 (has links)
Στην παρούσα εργασία παρουσιάζεται μία μέθοδος πλήρους διακριτοποίησης (χωρικής και χρονικής) για την εξίσωση των Korteweg και de Vries. H μέθοδος αυτή μελετήθηκε από τον J. Schiff στην εργασία Loop groups and discrete KdV equations και στηρίζεται στην διάσπαση Birkhoff σε κατάλληλη ομάδα βρόχων για την εύρεση του ζεύγους Lax. Για τις προκύπτουσες εξισώσεις μερικών διαφορών κατασκευάζονται μετασχηματισμοί Backlund μέσω της ίδιας μεθόδου, οι οποίοι, στην συνέχεια, χρησιμοποιούνται για την εύρεση σολιτονικών λύσεων. Ειδικότερα, μία από τις διακριτοποιήσεις έχει άμεσο ("φυσικό") συνεχές όριο την εξίσωση potential KdV. Σε κάθε περίπτωση διακριτοποίησης, κατασκευάζονται σολιτονικές λύσεις, οι οποίες συγκρίνονται με αυτές της συνεχούς περίπτωσης και εξετάζονται ως προς την σολιτονική αλληλεπίδραση. / In this thesis, we present a method of full discretization (both spatial and temporal coordinates are discretized) for the Korteweg and de Vries' equation. This method was studied by J. Schiff in his paper Loop groups and discrete KdV equations. The procedure is based on Birkhoff decomposition in an appropriate loop group in order to derive a Lax representation. For the resulting partial difference equations, we construct Backlund transformations via the same method, which are used to generate soliton solutions. In particular, one discretization has the potential KdV equation as a standard (natural) continuum limit. In both cases, soliton solutions are produced and compared with those of the continuous case. Finally, we study their soliton interaction.
|
Page generated in 0.1399 seconds